enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Miller index - Wikipedia

    en.wikipedia.org/wiki/Miller_index

    In either case, one needs to choose the three lattice vectors a 1, a 2, and a 3 that define the unit cell (note that the conventional unit cell may be larger than the primitive cell of the Bravais lattice, as the examples below illustrate). Given these, the three primitive reciprocal lattice vectors are also determined (denoted b 1, b 2, and b 3).

  3. Brillouin zone - Wikipedia

    en.wikipedia.org/wiki/Brillouin_zone

    k-vectors exceeding the first Brillouin zone (red) do not carry any more information than their counterparts (black) in the first Brillouin zone. k at the Brillouin zone edge is the spatial Nyquist frequency of waves in the lattice, because it corresponds to a half-wavelength equal to the inter-atomic lattice spacing a . [ 1 ]

  4. Reciprocal lattice - Wikipedia

    en.wikipedia.org/wiki/Reciprocal_lattice

    Reciprocal space (also called k-space) provides a way to visualize the results of the Fourier transform of a spatial function. It is similar in role to the frequency domain arising from the Fourier transform of a time dependent function; reciprocal space is a space over which the Fourier transform of a spatial function is represented at spatial frequencies or wavevectors of plane waves of the ...

  5. Crystal structure - Wikipedia

    en.wikipedia.org/wiki/Crystal_structure

    For face-centered cubic (fcc) and body-centered cubic (bcc) lattices, the primitive lattice vectors are not orthogonal. However, in these cases the Miller indices are conventionally defined relative to the lattice vectors of the cubic supercell and hence are again simply the Cartesian directions.

  6. Bravais lattice - Wikipedia

    en.wikipedia.org/wiki/Bravais_lattice

    If the lattice or crystal is 2-dimensional, the primitive cell has a minimum area; likewise in 3 dimensions the primitive cell has a minimum volume. Despite this rigid minimum-size requirement, there is not one unique choice of primitive unit cell. In fact, all cells whose borders are primitive translation vectors will be primitive unit cells.

  7. Wigner–Seitz cell - Wikipedia

    en.wikipedia.org/wiki/Wigner–Seitz_cell

    The Wigner–Seitz cell, named after Eugene Wigner and Frederick Seitz, is a primitive cell which has been constructed by applying Voronoi decomposition to a crystal lattice. It is used in the study of crystalline materials in crystallography. Wigner–Seitz primitive cell for different angle parallelogram lattices.

  8. Hexagonal lattice - Wikipedia

    en.wikipedia.org/wiki/Hexagonal_lattice

    Vectors and are primitive translation vectors. The honeycomb point set is a special case of the hexagonal lattice with a two-atom basis. [ 1 ] The centers of the hexagons of a honeycomb form a hexagonal lattice, and the honeycomb point set can be seen as the union of two offset hexagonal lattices.

  9. Burgers vector - Wikipedia

    en.wikipedia.org/wiki/Burgers_vector

    where a is the unit cell edge length of the crystal, ‖ ‖ is the magnitude of the Burgers vector, and h, k, and l are the components of the Burgers vector, = ; the coefficient ⁠ ⁠ is because in BCC and FCC lattices, the shortest lattice vectors could be as expressed .