enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gaussian elimination - Wikipedia

    en.wikipedia.org/wiki/Gaussian_elimination

    Animation of Gaussian elimination. Red row eliminates the following rows, green rows change their order. In mathematics, Gaussian elimination, also known as row reduction, is an algorithm for solving systems of linear equations. It consists of a sequence of row-wise operations performed on the corresponding matrix of coefficients.

  3. Elimination theory - Wikipedia

    en.wikipedia.org/wiki/Elimination_theory

    The field of elimination theory was motivated by the need of methods for solving systems of polynomial equations. One of the first results was Bézout's theorem , which bounds the number of solutions (in the case of two polynomials in two variables at Bézout time).

  4. Tridiagonal matrix algorithm - Wikipedia

    en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm

    In numerical linear algebra, the tridiagonal matrix algorithm, also known as the Thomas algorithm (named after Llewellyn Thomas), is a simplified form of Gaussian elimination that can be used to solve tridiagonal systems of equations. A tridiagonal system for n unknowns may be written as

  5. System of linear equations - Wikipedia

    en.wikipedia.org/wiki/System_of_linear_equations

    The simplest method for solving a system of linear equations is to repeatedly eliminate variables. This method can be described as follows: In the first equation, solve for one of the variables in terms of the others. Substitute this expression into the remaining equations. This yields a system of equations with one fewer equation and unknown.

  6. Frontal solver - Wikipedia

    en.wikipedia.org/wiki/Frontal_solver

    A frontal solver is an approach to solving sparse linear systems which is used extensively in finite element analysis. [1] Algorithms of this kind are variants of Gauss elimination that automatically avoids a large number of operations involving zero terms due to the fact that the matrix is only sparse. [2]

  7. Elimination - Wikipedia

    en.wikipedia.org/wiki/Elimination

    Elimination theory, the theory of the methods to eliminate variables between polynomial equations. Disjunctive syllogism, a rule of inference; Gaussian elimination, a method of solving systems of linear equations; Fourier–Motzkin elimination, an algorithm for reducing systems of linear inequalities

  8. LU decomposition - Wikipedia

    en.wikipedia.org/wiki/LU_decomposition

    The above procedure can be repeatedly applied to solve the equation multiple times for different b. In this case it is faster (and more convenient) to do an LU decomposition of the matrix A once and then solve the triangular matrices for the different b, rather than using Gaussian elimination each time

  9. Fourier–Motzkin elimination - Wikipedia

    en.wikipedia.org/wiki/Fourier–Motzkin_elimination

    Fourier–Motzkin elimination, also known as the FME method, is a mathematical algorithm for eliminating variables from a system of linear inequalities. It can output real solutions. The algorithm is named after Joseph Fourier [ 1 ] who proposed the method in 1826 and Theodore Motzkin who re-discovered it in 1936.