Ads
related to: elimination equations example problems worksheetkutasoftware.com has been visited by 10K+ users in the past month
Search results
Results from the WOW.Com Content Network
For example, to solve a system of n equations for n unknowns by performing row operations on the matrix until it is in echelon form, and then solving for each unknown in reverse order, requires n(n + 1)/2 divisions, (2n 3 + 3n 2 − 5n)/6 multiplications, and (2n 3 + 3n 2 − 5n)/6 subtractions, [10] for a total of approximately 2n 3 /3 operations.
In commutative algebra and algebraic geometry, elimination theory is the classical name for algorithmic approaches to eliminating some variables between polynomials of several variables, in order to solve systems of polynomial equations. Classical elimination theory culminated with the work of Francis Macaulay on multivariate resultants, as ...
In other situations, the system of equations may be block tridiagonal (see block matrix), with smaller submatrices arranged as the individual elements in the above matrix system (e.g., the 2D Poisson problem). Simplified forms of Gaussian elimination have been developed for these situations. [6]
A system of linear equations is said to be in row echelon form if its augmented matrix is in row echelon form. Similarly, a system of linear equations is said to be in reduced row echelon form or in canonical form if its augmented matrix is in reduced row echelon form. The canonical form may be viewed as an explicit solution of the linear system.
Fourier–Motzkin elimination, also known as the FME method, is a mathematical algorithm for eliminating variables from a system of linear inequalities. It can output real solutions. The algorithm is named after Joseph Fourier [ 1 ] who proposed the method in 1826 and Theodore Motzkin who re-discovered it in 1936.
The main theorem of elimination theory is a corollary and a generalization of Macaulay's theory of multivariate resultant. The resultant of n homogeneous polynomials in n variables is the value of a polynomial function of the coefficients, which takes the value zero if and only if the polynomials have a common non-trivial zero over some field ...
Ads
related to: elimination equations example problems worksheetkutasoftware.com has been visited by 10K+ users in the past month