Search results
Results from the WOW.Com Content Network
Birch reduction of benzene, also available in animated form. The reaction is known to be third order – first order in the aromatic, first order in the alkali metal, and first order in the alcohol. [4] This requires that the rate-limiting step be the conversion of radical anion B to the cyclohexadienyl radical C. Birch reduction of anisole.
Anisole, or methoxybenzene, is an organic compound with the formula CH 3 OC 6 H 5. It is a colorless liquid with a smell reminiscent of anise seed, and in fact many of its derivatives are found in natural and artificial fragrances .
Cyclohexenone is obtained by Birch reduction of anisole followed by acid hydrolysis. It can be obtained from cyclohexanone by α-bromination followed by treatment with base. Hydrolysis of 3-chloro cyclohexene followed by oxidation of the cyclohexenol is yet another route.
First, the nickel metal dehydrogenates the alcohol to form a ketone and Ni-H complex. Then, the ketone reacts with ammonia to form an imine. Finally, the imine reacts with Ni-H to regenerate catalyst and form primary amine. An example of a homogeneous catalytic system is the reductive amination of ketones done with an iridium catalyst. [20]
Solvated electrons are involved in the reaction of alkali metals with water, even though the solvated electron has only a fleeting existence. [10] Below pH = 9.6 the hydrated electron reacts with the hydronium ion giving atomic hydrogen, which in turn can react with the hydrated electron giving hydroxide ion and usual molecular hydrogen H 2 .
3-Hydroxylcarbonyls, called aldols, release water upon standing at room temperature: RC(O)CH 2 CH(OH)R' → RC(O)CH=CHR' + H 2 O. The reaction is induced by dehydrating reagents. For example, 2-methyl-cyclohexan-1-ol dehydrates to 1-methylcyclohexene in the presence of Martin's sulfurane, which reacts irreversibly with water. [6] [7]
Once the imine is produced, it reacts with phenol in the presence of water to yield an α-aminobenzylphenol. An electron pushing mechanism for the Betti Reaction. First, the lone-pair on the nitrogen of the imine deprotonates the phenol, pushing the bonding electrons onto the oxygen.
The first two step involve the reaction of the α-bromo-acetophenone with molecules of aniline to form intermediate 4. The charged aniline forms a decent enough leaving group for an electrophilic cyclization to form intermediate 5 , which quickly aromatizes and tautomerizes to give the desired indole 7 .