enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Line integral - Wikipedia

    en.wikipedia.org/wiki/Line_integral

    A line integral of a scalar field is thus a line integral of a vector field, where the vectors are always tangential to the line of the integration. Line integrals of vector fields are independent of the parametrization r in absolute value, but they do depend on its orientation. Specifically, a reversal in the orientation of the parametrization ...

  3. Gradient theorem - Wikipedia

    en.wikipedia.org/wiki/Gradient_theorem

    where ∇φ denotes the gradient vector field of φ. The gradient theorem implies that line integrals through gradient fields are path-independent. In physics this theorem is one of the ways of defining a conservative force. By placing φ as potential, ∇φ is a conservative field.

  4. Conservative vector field - Wikipedia

    en.wikipedia.org/wiki/Conservative_vector_field

    In vector calculus, a conservative vector field is a vector field that is the gradient of some function. [1] A conservative vector field has the property that its line integral is path independent; the choice of path between two points does not change the value of the line integral. Path independence of the line integral is equivalent to the ...

  5. Stokes' theorem - Wikipedia

    en.wikipedia.org/wiki/Stokes'_theorem

    The line integral of a vector field over a loop is equal to the surface integral of its curl over the enclosed surface. Stokes' theorem is a special case of the generalized Stokes theorem. [5] [6] In particular, a vector field on can be considered as a 1-form in which case its curl is its exterior derivative, a 2-form.

  6. Circulation (physics) - Wikipedia

    en.wikipedia.org/wiki/Circulation_(physics)

    Field lines of a vector field v, around the boundary of an open curved surface with infinitesimal line element dl along boundary, and through its interior with dS the infinitesimal surface element and n the unit normal to the surface. Top: Circulation is the line integral of v around a closed loop C. Project v along dl, then sum.

  7. Vector calculus identities - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus_identities

    A tensor field of order greater than one may be ... Integration around a closed curve in the clockwise sense is the negative of the same line integral in the ...

  8. Vector field - Wikipedia

    en.wikipedia.org/wiki/Vector_field

    Given a vector field V and a curve γ, parametrized by t in [a, b] (where a and b are real numbers), the line integral is defined as = (()) ˙ (). To show vector field topology one can use line integral convolution .

  9. Maxwell's equations - Wikipedia

    en.wikipedia.org/wiki/Maxwell's_equations

    The equivalence of Faraday's law in differential and integral form follows likewise. The line integrals and curls are analogous to quantities in classical fluid dynamics: the circulation of a fluid is the line integral of the fluid's flow velocity field around a closed loop, and the vorticity of the fluid is the curl of the velocity field.