Search results
Results from the WOW.Com Content Network
This algorithm can easily be adapted to compute the variance of a finite population: simply divide by n instead of n − 1 on the last line.. Because SumSq and (Sum×Sum)/n can be very similar numbers, cancellation can lead to the precision of the result to be much less than the inherent precision of the floating-point arithmetic used to perform the computation.
Throughout this article, boldfaced unsubscripted and are used to refer to random vectors, and Roman subscripted and are used to refer to scalar random variables.. If the entries in the column vector = (,, …,) are random variables, each with finite variance and expected value, then the covariance matrix is the matrix whose (,) entry is the covariance [1]: 177 ...
In Python, the statsmodels [15] module includes functions for the covariance matrix using Newey–West. In Gretl, the option --robust to several estimation commands (such as ols) in the context of a time-series dataset produces Newey–West standard errors. [16]
The sample covariance matrix (SCM) is an unbiased and efficient estimator of the covariance matrix if the space of covariance matrices is viewed as an extrinsic convex cone in R p×p; however, measured using the intrinsic geometry of positive-definite matrices, the SCM is a biased and inefficient estimator. [1]
In the case of a time series which is stationary in the wide sense, both the means and variances are constant over time (E(X n+m) = E(X n) = μ X and var(X n+m) = var(X n) and likewise for the variable Y). In this case the cross-covariance and cross-correlation are functions of the time difference: cross-covariance
The same C(x, y) is called the autocovariance function in two instances: in time series (to denote exactly the same concept except that x and y refer to locations in time rather than in space), and in multivariate random fields (to refer to the covariance of a variable with itself, as opposed to the cross covariance between two different ...
The arithmetic mean of a population, or population mean, is often denoted μ. [2] The sample mean ¯ (the arithmetic mean of a sample of values drawn from the population) makes a good estimator of the population mean, as its expected value is equal to the population mean (that is, it is an unbiased estimator).
The standard deviation is the square root of the variance. When individual determinations of an age are not of equal significance, it is better to use a weighted mean to obtain an "average" age, as follows: x ¯ ∗ = ∑ i = 1 N w i x i ∑ i = 1 N w i . {\displaystyle {\overline {x}}^{*}={\frac {\sum _{i=1}^{N}w_{i}x_{i}}{\sum _{i=1}^{N}w_{i}}}.}