Search results
Results from the WOW.Com Content Network
Eadie–Hofstee plot of v against v/a for Michaelis–Menten kinetics. In biochemistry, an Eadie–Hofstee plot (or Eadie–Hofstee diagram) is a graphical representation of the Michaelis–Menten equation in enzyme kinetics. It has been known by various different names, including Eadie plot, Hofstee plot and Augustinsson plot.
Curve of the Michaelis–Menten equation labelled in accordance with IUBMB recommendations. In biochemistry, Michaelis–Menten kinetics, named after Leonor Michaelis and Maud Menten, is the simplest case of enzyme kinetics, applied to enzyme-catalysed reactions of one substrate and one product.
The best known plots of the Michaelis–Menten equation, including the double-reciprocal plot of / against /, [2] the Hanes plot of / against , [3] and the Eadie–Hofstee plot [4] [5] of against / are all plots in observation space, with each observation represented by a point, and the parameters determined from the slope and intercepts of the lines that result.
Reversible Michaelis–Menten kinetics, using the reversible form of the Michaelis–Menten equation, is therefore important when developing computer models of cellular processes involving enzymes. In enzyme kinetics, the Michaelis–Menten kinetics kinetic rate law that describes the conversion of one substrate to one product, is often ...
The Monod equation models the growth of organisms during substrate limiting conditions, and its parameters are determined through experimental observation. The Monod equation is based on a single substrate-consuming enzyme system that follows the Michaelis-Menten equation. [1] The Monod takes the following familiar form:
While the Lineweaver–Burk plot has historically been used for evaluation of the parameters, together with the alternative linear forms of the Michaelis–Menten equation such as the Hanes–Woolf plot or Eadie–Hofstee plot, all linearized forms of the Michaelis–Menten equation should be avoided to calculate the kinetic parameters ...
Henri is credited with being the first to write the equation that is now known as the Michaelis-Menten equation. Using glucose and fructose in the catalytic reactions controlled by maltase and invertase, Leonor Michaelis was the first scientist to distinguish the different types of inhibition by using the pH scale which did not exist in Henri's ...
The Michaelis constant in turn is defined as follows: K M = k r + k c a t k f {\displaystyle K_{M}={\frac {k_{r}+k_{cat}}{k_{f}}}} The Michaelis constant is equal to the substrate concentration at which the enzyme converts substrates into products at half its maximal rate and hence is related to the affinity of the substrate for the enzyme.