Search results
Results from the WOW.Com Content Network
The phenomenon, when taken to mean "hot water freezes faster than cold", is difficult to reproduce or confirm because it is ill-defined. [4] Monwhea Jeng proposed a more precise wording: "There exists a set of initial parameters, and a pair of temperatures, such that given two bodies of water identical in these parameters, and differing only in initial uniform temperatures, the hot one will ...
The unusual density curve and lower density of ice than of water is essential for much of the life on earth—if water were most dense at the freezing point, then in winter the cooling at the surface would lead to convective mixing. Once 0 °C are reached, the water body would freeze from the bottom up, and all life in it would be killed. [36]
Running water through the pipe will help melt ice in the pipe. Apply heat to the section of pipe using an electric heating pad wrapped around the pipe, an electric hair dryer, a portable space ...
Classic experiment involving regelation of an ice block as a tensioned wire passes through it. Regelation is the phenomenon of ice melting under pressure and refreezing when the pressure is reduced. This can be demonstrated by looping a fine wire around a block of ice, with a heavy weight attached to it.
An ice surface in fresh water melts solely by free convection with a rate that depends linearly on the water temperature, T ∞, when T ∞ is less than 3.98 °C, and superlinearly when T ∞ is equal to or greater than 3.98 °C, with the rate being proportional to (T ∞ − 3.98 °C) α, with α = 5 / 3 for T ∞ much greater than 8 ...
The freezing speed directly influences the nucleation process and ice crystal size. A supercooled liquid will stay in a liquid state below the normal freezing point when it has little opportunity for nucleation—that is, if it is pure enough and is in a smooth-enough container. Once agitated it will rapidly become a solid. During the final ...
For premium support please call: 800-290-4726 more ways to reach us
Leidenfrost droplet Demonstration of the Leidenfrost effect Leidenfrost effect of a single drop of water. The Leidenfrost effect is a physical phenomenon in which a liquid, close to a solid surface of another body that is significantly hotter than the liquid's boiling point, produces an insulating vapor layer that keeps the liquid from boiling rapidly.