Search results
Results from the WOW.Com Content Network
H 0: There are no outliers in the data set H a: There is exactly one outlier in the data set. The Grubbs test statistic is defined as = =, …, | ¯ | with ¯ and denoting the sample mean and standard deviation, respectively. The Grubbs test statistic is the largest absolute deviation from the sample mean in units of the sample standard deviation.
The modified Thompson Tau test is a method used to determine if an outlier exists in a data set. [23] The strength of this method lies in the fact that it takes into account a data set's standard deviation, average and provides a statistically determined rejection zone; thus providing an objective method to determine if a data point is an outlier.
Where gap is the absolute difference between the outlier in question and the closest number to it. If Q > Q table, where Q table is a reference value corresponding to the sample size and confidence level, then reject the questionable point. Note that only one point may be rejected from a data set using a Q test.
The sample maximum and minimum are the least robust statistics: they are maximally sensitive to outliers.. This can either be an advantage or a drawback: if extreme values are real (not measurement errors), and of real consequence, as in applications of extreme value theory such as building dikes or financial loss, then outliers (as reflected in sample extrema) are important.
For example, some may be suited to detecting local outliers, while others global, and methods have little systematic advantages over another when compared across many data sets. [ 23 ] [ 24 ] Almost all algorithms also require the setting of non-intuitive parameters critical for performance, and usually unknown before application.
The idea behind Chauvenet's criterion finds a probability band that reasonably contains all n samples of a data set, centred on the mean of a normal distribution.By doing this, any data point from the n samples that lies outside this probability band can be considered an outlier, removed from the data set, and a new mean and standard deviation based on the remaining values and new sample size ...
A simple example is fitting a line in two dimensions to a set of observations. Assuming that this set contains both inliers, i.e., points which approximately can be fitted to a line, and outliers, points which cannot be fitted to this line, a simple least squares method for line fitting will generally produce a line with a bad fit to the data including inliers and outliers.
Peirce's criterion does not depend on observation data (only characteristics of the observation data), therefore making it a highly repeatable process that can be calculated independently of other processes. This feature makes Peirce's criterion for identifying outliers ideal in computer applications because it can be written as a call function.