Search results
Results from the WOW.Com Content Network
An example of the relationship between sample size and power levels. Higher power requires larger sample sizes. Statistical power may depend on a number of factors. Some factors may be particular to a specific testing situation, but in normal use, power depends on the following three aspects that can be potentially controlled by the practitioner:
The origin of the phrase "Lies, damned lies, and statistics" is unclear, but Mark Twain attributed it to Benjamin Disraeli [1] "Lies, damned lies, and statistics" is a phrase describing the persuasive power of statistics to bolster weak arguments, "one of the best, and best-known" critiques of applied statistics. [2]
Matched or independent study designs may be used. Power, sample size, and the detectable alternative hypothesis are interrelated. The user specifies any two of these three quantities and the program derives the third. A description of each calculation, written in English, is generated and may be copied into the user's documents.
Topics in probability and statistical reasoning are taught in high school algebra (or mathematical science) courses; statistical reasoning has been examined in the SAT test since 1994. The College Board has developed an Advanced Placement course in statistics , which has provided a college-level course in statistics to hundreds of thousands of ...
In statistics, a power law is a functional relationship between two quantities, where a relative change in one quantity results in a relative change in the other quantity proportional to the change raised to a constant exponent: one quantity varies as a power of another. The change is independent of the initial size of those quantities.
Algorithms of this nature use statistical inference to find the best class for a given instance. Unlike other algorithms, which simply output a "best" class, probabilistic algorithms output a probability of the instance being a member of each of the possible classes. The best class is normally then selected as the one with the highest probability.
In statistics, the term higher-order statistics (HOS) refers to functions which use the third or higher power of a sample, as opposed to more conventional techniques of lower-order statistics, which use constant, linear, and quadratic terms (zeroth, first, and second powers).
A statistical model is a mathematical model that embodies a set of statistical assumptions concerning the generation of sample data (and similar data from a larger population). A statistical model represents, often in considerably idealized form, the data-generating process . [ 1 ]