enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Barycenter (astronomy) - Wikipedia

    en.wikipedia.org/wiki/Barycenter_(astronomy)

    If the four giant planets were on a straight line on the same side of the Sun, the combined center of mass would lie at about 1.17 solar radii, or just over 810,000 km, above the Sun's surface. [ 7 ] The calculations above are based on the mean distance between the bodies and yield the mean value r 1 .

  3. Kepler's laws of planetary motion - Wikipedia

    en.wikipedia.org/wiki/Kepler's_laws_of_planetary...

    The original form of this law (referring to not the semi-major axis, but rather a "mean distance") holds true only for planets with small eccentricities near zero. [27] Using Newton's law of gravitation (published 1687), this relation can be found in the case of a circular orbit by setting the centripetal force equal to the gravitational force:

  4. Orbital eccentricity - Wikipedia

    en.wikipedia.org/wiki/Orbital_eccentricity

    r a is the radius at apoapsis (also "apofocus", "aphelion", "apogee"), i.e., the farthest distance of the orbit to the center of mass of the system, which is a focus of the ellipse. r p is the radius at periapsis (or "perifocus" etc.), the closest distance.

  5. Elliptic orbit - Wikipedia

    en.wikipedia.org/wiki/Elliptic_orbit

    is the distance of the orbiting body from the central body, is the length of the semi-major axis, is the standard gravitational parameter. Conclusions: For a given semi-major axis the specific orbital energy is independent of the eccentricity. Using the virial theorem to find:

  6. Two-body problem in general relativity - Wikipedia

    en.wikipedia.org/wiki/Two-body_problem_in...

    Figure 1. Typical elliptical path of a smaller mass m orbiting a much larger mass M. The larger mass is also moving on an elliptical orbit, but it is too small to be seen because M is much greater than m. The ends of the diameter indicate the apsides, the points of closest and farthest distance.

  7. Orbit equation - Wikipedia

    en.wikipedia.org/wiki/Orbit_equation

    In astrodynamics, an orbit equation defines the path of orbiting body around central body relative to , without specifying position as a function of time.Under standard assumptions, a body moving under the influence of a force, directed to a central body, with a magnitude inversely proportional to the square of the distance (such as gravity), has an orbit that is a conic section (i.e. circular ...

  8. Apsis - Wikipedia

    en.wikipedia.org/wiki/Apsis

    The apsides refer to the farthest (2) and nearest (3) points reached by an orbiting planetary body (2 and 3) with respect to a primary, or host, body (1). An apsis (from Ancient Greek ἁψίς (hapsís) 'arch, vault'; pl. apsides / ˈ æ p s ɪ ˌ d iː z / AP-sih-deez) [1] [2] is the farthest or nearest point in the orbit of a planetary body about its primary body.

  9. Kepler's equation - Wikipedia

    en.wikipedia.org/wiki/Kepler's_equation

    In orbital mechanics, Kepler's equation relates various geometric properties of the orbit of a body subject to a central force.. It was derived by Johannes Kepler in 1609 in Chapter 60 of his Astronomia nova, [1] [2] and in book V of his Epitome of Copernican Astronomy (1621) Kepler proposed an iterative solution to the equation.