Search results
Results from the WOW.Com Content Network
The worldwide solar-driven wind results in the so-called Sq (solar quiet) current system in the E region of the Earth's ionosphere (ionospheric dynamo region) (100–130 km (60–80 mi) altitude). [citation needed] Resulting from this current is an electrostatic field directed west–east (dawn–dusk) in the equatorial day side of the ionosphere.
In the height region between about 85 and 200 km altitude on Earth, the ionospheric plasma is electrically conducting. Atmospheric tidal winds due to differential solar heating or due to gravitational lunar forcing move the ionospheric plasma against the geomagnetic field lines thus generating electric fields and currents just like a dynamo coil moving against magnetic field lines.
The Atmospheric dynamo is a pattern of electrical currents that are set up in the Earth's ionosphere by multiple effects, mostly the Sun's solar wind, but also the tides of the Moon and Sun. [1] [2] The currents flow in circuits between the poles and the equator, but they are not well understood.
Many low-Earth orbiting satellites, including the International Space Station (ISS), fly through the ionosphere and can be affected by its changing electric and magnetic fields. The ionosphere also acts as a conduit for many communications signals, such as radio waves and the signals that make GPS systems work.
Layers of the ionosphere.The Kennelly–Heaviside layer is the E region. The Heaviside layer, [1] [2] sometimes called the Kennelly–Heaviside layer, [3] [4] named after Arthur E. Kennelly and Oliver Heaviside, is a layer of ionised gas occurring roughly between 90km and 150 km (56 and 93 mi) above the ground — one of several layers in the Earth's ionosphere.
The radiation emitted by solar wind only reaches the highest layers of the Earth's atmosphere, including the ionosphere. There are however reports of a possible impact on lower layers of the atmosphere. It is recorded that the increase of solar wind during March 2012 in the United States coincided with the heat waves that occurred at the time. [29]
SpaceX’s rocket explosion in November 2023 created a massive hole in the Earth's ionosphere, providing scientists with a rare opportunity to study its effects.
A Birkeland current (also known as field-aligned current, FAC) is a set of electrical currents that flow along geomagnetic field lines connecting the Earth's magnetosphere to the Earth's high latitude ionosphere. In the Earth's magnetosphere, the currents are driven by the solar wind and interplanetary magnetic field (IMF) and by bulk motions ...