Search results
Results from the WOW.Com Content Network
The decimal number system in use today [3] was first recorded in Indian mathematics. [4] Indian mathematicians made early contributions to the study of the concept of zero as a number, [ 5 ] negative numbers , [ 6 ] arithmetic , and algebra . [ 7 ]
Decimal fractions can also be expressed using scientific notation with negative exponents, such as 6.023 × 10 −7, a convenient alternative to the unwieldy 0.0000006023. The 10 −7 represents a denominator of 10 7. Dividing by 10 7 moves the decimal point seven places to the left.
The Hindu–Arabic system is designed for positional notation in a decimal system. In a more developed form, positional notation also uses a decimal marker (at first a mark over the ones digit but now more commonly a decimal point or a decimal comma which separates the ones place from the tenths place), and also a symbol for "these digits recur ad infinitum".
Any such decimal fraction, i.e.: d n = 0 for n > N, may be converted to its equivalent infinite decimal expansion by replacing d N by d N − 1 and replacing all subsequent 0s by 9s (see 0.999...). In summary, every real number that is not a decimal fraction has a unique infinite decimal expansion.
The notion of irreducible fraction generalizes to the field of fractions of any unique factorization domain: any element of such a field can be written as a fraction in which denominator and numerator are coprime, by dividing both by their greatest common divisor. [7] This applies notably to rational expressions over a field. The irreducible ...
The Rhind Mathematical Papyrus. An Egyptian fraction is a finite sum of distinct unit fractions, such as + +. That is, each fraction in the expression has a numerator equal to 1 and a denominator that is a positive integer, and all the denominators differ from each other.
Some real numbers have decimal expansions that eventually get into loops, endlessly repeating a sequence of one or more digits: 1 ⁄ 3 = 0.33333... 1 ⁄ 7 = 0.142857142857... 1318 ⁄ 185 = 7.1243243243... Every time this happens the number is still a rational number (i.e. can alternatively be represented as a ratio of an integer and a ...
Continued fractions can also be applied to problems in number theory, and are especially useful in the study of Diophantine equations. In the late eighteenth century Lagrange used continued fractions to construct the general solution of Pell's equation, thus answering a question that had fascinated mathematicians for more than a thousand years. [9]