enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cyclotron radiation - Wikipedia

    en.wikipedia.org/wiki/Cyclotron_radiation

    In particle physics, cyclotron radiation is electromagnetic radiation emitted by non-relativistic accelerating charged particles deflected by a magnetic field. [1] The Lorentz force on the particles acts perpendicular to both the magnetic field lines and the particles' motion through them, creating an acceleration of charged particles that causes them to emit radiation as a result of the ...

  3. Cyclotron - Wikipedia

    en.wikipedia.org/wiki/Cyclotron

    Lawrence's 60-inch (152 cm) cyclotron, c. 1939, showing the beam of accelerated ions (likely protons or deuterons) exiting the machine and ionizing the surrounding air causing a blue glow. A cyclotron is a type of particle accelerator invented by Ernest Lawrence in 1929–1930 at the University of California, Berkeley, [1] [2] and patented in 1932.

  4. List of electromagnetism equations - Wikipedia

    en.wikipedia.org/wiki/List_of_electromagnetism...

    Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal n̂, d is the dipole moment between two point charges, the volume density of these is the polarization density P.

  5. Synchrotron radiation - Wikipedia

    en.wikipedia.org/wiki/Synchrotron_radiation

    The general term for radiation emitted by particles in a magnetic field is gyromagnetic radiation, for which synchrotron radiation is the ultra-relativistic special case. Radiation emitted by charged particles moving non-relativistically in a magnetic field is called cyclotron emission. [2]

  6. Larmor formula - Wikipedia

    en.wikipedia.org/wiki/Larmor_formula

    The radiation response force, on the other hand, also acts on the charged particle as a result of the radiation. The dynamics of charged particles are significantly impacted by the existence of this force. In particular, it causes a change in their motion that may be accounted for by the Larmor formula, a factor in the Lorentz-Dirac equation.

  7. Jefimenko's equations - Wikipedia

    en.wikipedia.org/wiki/Jefimenko's_equations

    The Heaviside–Feynman formula, also known as the Jefimenko–Feynman formula, can be seen as the point-like electric charge version of Jefimenko's equations. Actually, it can be (non trivially) deduced from them using Dirac functions , or using the Liénard-Wiechert potentials . [ 4 ]

  8. Bremsstrahlung - Wikipedia

    en.wikipedia.org/wiki/Bremsstrahlung

    Bremsstrahlung produced by a high-energy electron deflected in the electric field of an atomic nucleus. In particle physics, bremsstrahlung / ˈ b r ɛ m ʃ t r ɑː l ə ŋ / [1] (German pronunciation: [ˈbʁɛms.ʃtʁaːlʊŋ] ⓘ; from German bremsen 'to brake' and Strahlung 'radiation') is electromagnetic radiation produced by the deceleration of a charged particle when deflected by ...

  9. Maxwell's equations - Wikipedia

    en.wikipedia.org/wiki/Maxwell's_equations

    The publication of the equations marked the unification of a theory for previously separately described phenomena: magnetism, electricity, light, and associated radiation. Since the mid-20th century, it has been understood that Maxwell's equations do not give an exact description of electromagnetic phenomena, but are instead a classical limit ...