Search results
Results from the WOW.Com Content Network
Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.
If necessary, simplify the long division problem by moving the decimals of the divisor and dividend by the same number of decimal places, to the right (or to the left), so that the decimal of the divisor is to the right of the last digit. When doing long division, keep the numbers lined up straight from top to bottom under the tableau.
Division is also not, in general, associative, meaning that when dividing multiple times, the order of division can change the result. [7] For example, (24 / 6) / 2 = 2, but 24 / (6 / 2) = 8 (where the use of parentheses indicates that the operations inside parentheses are performed before the operations outside parentheses).
A model describes how units of computations, memories, and communications are organized. [1] The computational complexity of an algorithm can be measured given a model of computation. Using a model allows studying the performance of algorithms independently of the variations that are specific to particular implementations and specific technology.
When a number is written using ordinary decimal notation, leading zeros are not significant, and trailing zeros of numbers not written with a decimal point are implicitly considered to be non-significant. [110] For example, the numbers 0.056 and 1200 each have only 2 significant digits, but the number 40.00 has 4 significant digits.
The dynamic predecessor problem is also commonly analyzed in the word RAM model, and was the original motivation for the model. Dan Willard used y-fast tries to solve this in O ( log w ) {\displaystyle O(\log w)} time, or, more precisely, O ( log log U ) {\displaystyle O(\log \log U)} where U is a bound on the values stored. [ 5 ]
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Euclidean division of polynomials is very similar to Euclidean division of integers and leads to polynomial remainders. Its existence is based on the following theorem: Given two univariate polynomials a ( x ) and b ( x ) (where b ( x ) is a non-zero polynomial) defined over a field (in particular, the reals or complex numbers ), there exist ...