Search results
Results from the WOW.Com Content Network
In biochemistry, the Monod–Wyman–Changeux model (MWC model, also known as the symmetry model or concerted model) describes allosteric transitions of proteins made up of identical subunits. It was proposed by Jean-Pierre Changeux in his PhD thesis, and described by Jacques Monod , Jeffries Wyman , and Jean-Pierre Changeux .
The sequential model (also known as the KNF model) is a theory that describes cooperativity of protein subunits. [1] It postulates that a protein's conformation changes with each binding of a ligand , thus sequentially changing its affinity for the ligand at neighboring binding sites.
The first description of cooperative binding to a multi-site protein was developed by A.V. Hill. [4] Drawing on observations of oxygen binding to hemoglobin and the idea that cooperativity arose from the aggregation of hemoglobin molecules, each one binding one oxygen molecule, Hill suggested a phenomenological equation that has since been named after him:
Allosteric regulation of an enzyme. In the fields of biochemistry and pharmacology an allosteric regulator (or allosteric modulator) is a substance that binds to a site on an enzyme or receptor distinct from the active site, resulting in a conformational change that alters the protein's activity, either enhancing or inhibiting its function.
In chemistry, a concerted reaction is a chemical reaction in which all bond breaking and bond making occurs in a single step. Reactive intermediates or other unstable high energy intermediates are not involved. [1] [2] Concerted reaction rates tend not to depend on solvent polarity ruling out large buildup of charge in the transition state.
The Princeton Review is an education services company providing tutoring, test preparation and admission resources for students. It was founded in 1981, [ 1 ] and since that time has worked with over 400 million students.
A Proton-coupled electron transfer (PCET) is a chemical reaction that involves the transfer of electrons and protons from one atom to another. The term was originally coined for single proton, single electron processes that are concerted, [1] but the definition has relaxed to include many related processes.
Concerted metalation-deprotonation (CMD) is a mechanistic pathway through which transition-metal catalyzed C–H activation reactions can take place. In a CMD pathway, the C–H bond of the substrate is cleaved and the new C–Metal bond forms through a single transition state . [ 1 ]