Search results
Results from the WOW.Com Content Network
[1] [2] Every positive integer is composite, prime, or the unit 1, so the composite numbers are exactly the numbers that are not prime and not a unit. [3] [4] E.g., the integer 14 is a composite number because it is the product of the two smaller integers 2 × 7 but the integers 2 and 3 are not because each can only be divided by one and itself ...
English: Plot of the number of divisors of integers from 1 to 1000, colour-coded by their units digit. Highly composite numbers are labelled in bold and superior highly composite numbers are starred. Numbers whose labels appear to the right of the dashed lines are largely composite numbers. Prime numbers are those with exactly 2 divisors.
A related concept is that of a largely composite number, a positive integer that has at least as many divisors as all smaller positive integers. The name can be somewhat misleading, as the first two highly composite numbers (1 and 2) are not actually composite numbers; however, all further terms are.
A list of articles about numbers (not about numerals). Topics include powers of ten, notable integers, prime and cardinal numbers, and the myriad system.
Such a number is algebraic and can be expressed as the sum of a rational number and the square root of a rational number. Constructible number: A number representing a length that can be constructed using a compass and straightedge. Constructible numbers form a subfield of the field of algebraic numbers, and include the quadratic surds.
The first 15 superior highly composite numbers, 2, 6, 12, 60, 120, 360, 2520, 5040, 55440, 720720, 1441440, 4324320, 21621600, 367567200, 6983776800 (sequence A002201 in the OEIS) are also the first 15 colossally abundant numbers, which meet a similar condition based on the sum-of-divisors function rather than the number of divisors. Neither ...
12 (twelve) is the natural number following 11 and preceding 13.. Twelve is the 3rd superior highly composite number, [1] the 3rd colossally abundant number, [2] the 5th highly composite number, and is divisible by the numbers from 1 to 4, and 6, a large number of divisors comparatively.
In number theory, Grimm's conjecture (named after Carl Albert Grimm, 1 April 1926 – 2 January 2018) states that to each element of a set of consecutive composite numbers one can assign a distinct prime that divides it. It was first published in American Mathematical Monthly, 76(1969) 1126-1128.