Search results
Results from the WOW.Com Content Network
The general linear model incorporates a number of different statistical models: ANOVA, ANCOVA, MANOVA, MANCOVA, ordinary linear regression, t-test and F-test. The general linear model is a generalization of multiple linear regression to the case of more than one dependent variable.
In statistics, a generalized linear model (GLM) is a flexible generalization of ordinary linear regression.The GLM generalizes linear regression by allowing the linear model to be related to the response variable via a link function and by allowing the magnitude of the variance of each measurement to be a function of its predicted value.
gretl is an example of an open-source statistical package. ADaMSoft – a generalized statistical software with data mining algorithms and methods for data management; ADMB – a software suite for non-linear statistical modeling based on C++ which uses automatic differentiation; Chronux – for neurobiological time series data; DAP – free ...
Linear quantile regression models a particular conditional quantile, for example the conditional median, as a linear function β T x of the predictors. Mixed models are widely used to analyze linear regression relationships involving dependent data when the dependencies have a known structure.
GLIM (an acronym for Generalized Linear Interactive Modelling) is a statistical software program for fitting generalized linear models (GLMs). It was developed by the Royal Statistical Society's Working Party on Statistical Computing (later renamed the GLIM Working Party), [1] chaired initially by John Nelder. [2]
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file
Linear least squares; Linear model; Linear prediction; Linear probability model; Linear regression; Linguistic demography; Linnik distribution – redirects to Geometric stable distribution; LISREL – proprietary statistical software package; List of basic statistics topics – redirects to Outline of statistics
In statistics, a generalized linear mixed model (GLMM) is an extension to the generalized linear model (GLM) in which the linear predictor contains random effects in addition to the usual fixed effects. [1] [2] [3] They also inherit from generalized linear models the idea of extending linear mixed models to non-normal data.