Search results
Results from the WOW.Com Content Network
A major advantage of blunt-end cloning is that the desired insert does not require any restriction sites in its sequence as blunt-ends are usually generated in a PCR, and the PCR generated blunt-ended DNA fragment may then be ligated into a blunt-ended vector generated from restriction digest. Blunt-end ligation, however, is much less efficient ...
Golden Gate assembly involves digesting DNA sequences containing a type IIS restriction enzyme cut site and ligating them together. Golden Gate Cloning or Golden Gate assembly [1] is a molecular cloning method that allows a researcher to simultaneously and directionally assemble multiple DNA fragments into a single piece using Type IIS restriction enzymes and T4 DNA ligase. [2]
The choice of vector for molecular cloning depends on the choice of host organism, the size of the DNA to be cloned, and whether and how the foreign DNA is to be expressed. [7] The DNA segments can be combined by using a variety of methods, such as restriction enzyme/ligase cloning or Gibson assembly. [citation needed]
Molecular cloning takes advantage of the fact that the chemical structure of DNA is fundamentally the same in all living organisms. Therefore, if any segment of DNA from any organism is inserted into a DNA segment containing the molecular sequences required for DNA replication, and the resulting recombinant DNA is introduced into the organism from which the replication sequences were obtained ...
It involves the cleavage by a restriction enzyme at a site in the plasmid and subsequent ligation of a pair of complementary oligonucleotides containing the mutation in the gene of interest to the plasmid. Usually, the restriction enzymes that cut at the plasmid and the oligonucleotide are the same, permitting sticky ends of the plasmid and ...
Ligation-independent cloning (LIC) is a form of molecular cloning that can be performed without the use of restriction endonucleases or DNA ligase. The technique was developed in the early 1990s as an alternative to restriction enzyme/ligase cloning. [ 1 ]
Dephosphorylation can play a key role in molecular biology, particularly cloning using restriction enzymes. The cut ends of a vector may re-ligate during a ligation step due to phosphorylation. By using a desphosphorylating phosphatase, re-ligation can be avoided. [20]
Several databases exist for restriction sites and enzymes, of which the largest noncommercial database is REBASE. [5] [6] Recently, it has been shown that statistically significant nullomers (i.e. short absent motifs which are highly expected to exist) in virus genomes are restriction sites indicating that viruses have probably got rid of these motifs to facilitate invasion of bacterial hosts. [7]