Search results
Results from the WOW.Com Content Network
Then, the backpropagation algorithm is used to find the gradient of the loss function with respect to all the network parameters. Consider an example of a neural network that contains a recurrent layer and a feedforward layer . There are different ways to define the training cost, but the aggregated cost is always the average of the costs of ...
Backpropagation computes the gradient of a loss function with respect to the weights of the network for a single input–output example, and does so efficiently, computing the gradient one layer at a time, iterating backward from the last layer to avoid redundant calculations of intermediate terms in the chain rule; this can be derived through ...
In 1986, David E. Rumelhart et al. popularised backpropagation but did not cite the original work. [29] [8] In 2003, interest in backpropagation networks returned due to the successes of deep learning being applied to language modelling by Yoshua Bengio with co-authors. [30]
Neural backpropagation is the phenomenon in which, after the action potential of a neuron creates a voltage spike down the axon (normal propagation), another impulse is generated from the soma and propagates towards the apical portions of the dendritic arbor or dendrites (from which much of the original input current originated).
Artificial neural networks (ANNs) are models created using machine learning to perform a number of tasks.Their creation was inspired by biological neural circuitry. [1] [a] While some of the computational implementations ANNs relate to earlier discoveries in mathematics, the first implementation of ANNs was by psychologist Frank Rosenblatt, who developed the perceptron. [1]
Paul John Werbos (born September 4, 1947) is an American social scientist and machine learning pioneer. He is best known for his 1974 dissertation, which first described the process of training artificial neural networks through backpropagation of errors. [1]
Active learning: Instead of assuming that all of the training examples are given at the start, active learning algorithms interactively collect new examples, typically by making queries to a human user. Often, the queries are based on unlabeled data, which is a scenario that combines semi-supervised learning with active learning.
To optimize this model, one needs to know two terms: the "reconstruction error", and the Kullback–Leibler divergence (KL-D). Both terms are derived from the free energy expression of the probabilistic model, and therefore differ depending on the noise distribution and the assumed prior of the data, here referred to as p-distribution.