Search results
Results from the WOW.Com Content Network
If one root r of a polynomial P(x) of degree n is known then polynomial long division can be used to factor P(x) into the form (x − r)Q(x) where Q(x) is a polynomial of degree n − 1. Q ( x ) is simply the quotient obtained from the division process; since r is known to be a root of P ( x ), it is known that the remainder must be zero.
Ruffini's rule can be used when one needs the quotient of a polynomial P by a binomial of the form . (When one needs only the remainder, the polynomial remainder theorem provides a simpler method.) A typical example, where one needs the quotient, is the factorization of a polynomial p ( x ) {\displaystyle p(x)} for which one knows a root r :
Divided differences is a recursive division process. Given a sequence of data points (,), …, (,), the method calculates the coefficients of the interpolation polynomial of these points in the Newton form.
In algebra, synthetic division is a method for manually performing Euclidean division of polynomials, with less writing and fewer calculations than long division. It is mostly taught for division by linear monic polynomials (known as Ruffini's rule ), but the method can be generalized to division by any polynomial .
Bairstow's approach is to use Newton's method to adjust the coefficients u and v in the quadratic + + until its roots are also roots of the polynomial being solved. The roots of the quadratic may then be determined, and the polynomial may be divided by the quadratic to eliminate those roots.
In mathematics the division polynomials provide a way to calculate multiples of points on elliptic curves and to study the fields generated by torsion points. They play a central role in the study of counting points on elliptic curves in Schoof's algorithm .
It is a generalization of both row reduction occurring in Gaussian elimination and division steps of the Euclidean division of univariate polynomials. [1] When completed as much as possible, it is sometimes called multivariate division although its result is not uniquely defined. Lead-reduction is a special case of reduction that is easier to ...
Logarithm tables can be used to divide two numbers, by subtracting the two numbers' logarithms, then looking up the antilogarithm of the result. Division can be calculated with a slide rule by aligning the divisor on the C scale with the dividend on the D scale. The quotient can be found on the D scale where it is aligned with the left index on ...