enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Factorization - Wikipedia

    en.wikipedia.org/wiki/Factorization

    The polynomial x 2 + cx + d, where a + b = c and ab = d, can be factorized into (x + a)(x + b). In mathematics, factorization (or factorisation, see English spelling differences) or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind.

  3. Fermat's factorization method - Wikipedia

    en.wikipedia.org/wiki/Fermat's_factorization_method

    Fermat's factorization method, named after Pierre de Fermat, is based on the representation of an odd integer as the difference of two squares: =. That difference is algebraically factorable as (+) (); if neither factor equals one, it is a proper factorization of N.

  4. Methods of computing square roots - Wikipedia

    en.wikipedia.org/wiki/Methods_of_computing...

    Find p, y and x, as follows: Let p be the part of the root found so far, ignoring any decimal point. (For the first step, p = 0.) Determine the greatest digit x such that (+). We will use a new variable y = x(20p + x). Note: 20p + x is simply twice p, with the digit x appended to the right.

  5. Factorization of polynomials over finite fields - Wikipedia

    en.wikipedia.org/wiki/Factorization_of...

    In mathematics and computer algebra the factorization of a polynomial consists of decomposing it into a product of irreducible factors.This decomposition is theoretically possible and is unique for polynomials with coefficients in any field, but rather strong restrictions on the field of the coefficients are needed to allow the computation of the factorization by means of an algorithm.

  6. Integer factorization - Wikipedia

    en.wikipedia.org/wiki/Integer_factorization

    A general-purpose factoring algorithm, also known as a Category 2, Second Category, or Kraitchik family algorithm, [10] has a running time which depends solely on the size of the integer to be factored. This is the type of algorithm used to factor RSA numbers. Most general-purpose factoring algorithms are based on the congruence of squares method.

  7. General number field sieve - Wikipedia

    en.wikipedia.org/wiki/General_number_field_sieve

    An optimal strategy for choosing these polynomials is not known; one simple method is to pick a degree d for a polynomial, consider the expansion of n in base m (allowing digits between −m and m) for a number of different m of order n 1/d, and pick f(x) as the polynomial with the smallest coefficients and g(x) as x − m.

  8. Factorization of polynomials - Wikipedia

    en.wikipedia.org/wiki/Factorization_of_polynomials

    Modern algorithms and computers can quickly factor univariate polynomials of degree more than 1000 having coefficients with thousands of digits. [3] For this purpose, even for factoring over the rational numbers and number fields, a fundamental step is a factorization of a polynomial over a finite field.

  9. Polynomial long division - Wikipedia

    en.wikipedia.org/wiki/Polynomial_long_division

    If one root r of a polynomial P(x) of degree n is known then polynomial long division can be used to factor P(x) into the form (x − r)Q(x) where Q(x) is a polynomial of degree n − 1. Q(x) is simply the quotient obtained from the division process; since r is known to be a root of P(x), it is known that the remainder must be zero.