enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dirichlet function - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_function

    The Dirichlet function is not Riemann-integrable on any segment of despite being bounded because the set of its discontinuity points is not negligible (for the Lebesgue measure). The Dirichlet function provides a counterexample showing that the monotone convergence theorem is not true in the context of the Riemann integral.

  3. Dirichlet L-function - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_L-function

    By analytic continuation, it can be extended to a meromorphic function on the whole complex plane, and is then called a Dirichlet -function and also denoted (,). These functions are named after Peter Gustav Lejeune Dirichlet who introduced them in ( Dirichlet 1837 ) to prove the theorem on primes in arithmetic progressions that also bears his name.

  4. Nowhere continuous function - Wikipedia

    en.wikipedia.org/wiki/Nowhere_continuous_function

    One example of such a function is the indicator function of the rational numbers, also known as the Dirichlet function. This function is denoted as 1 Q {\displaystyle \mathbf {1} _{\mathbb {Q} }} and has domain and codomain both equal to the real numbers .

  5. Dirichlet distribution - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_distribution

    The symmetric case might be useful, for example, when a Dirichlet prior over components is called for, but there is no prior knowledge favoring one component over another. Since all elements of the parameter vector have the same value, the symmetric Dirichlet distribution can be parametrized by a single scalar value α , called the ...

  6. Dirichlet's principle - Wikipedia

    en.wikipedia.org/wiki/Dirichlet's_principle

    The name "Dirichlet's principle" is due to Bernhard Riemann, who applied it in the study of complex analytic functions. [1]Riemann (and others such as Carl Friedrich Gauss and Peter Gustav Lejeune Dirichlet) knew that Dirichlet's integral is bounded below, which establishes the existence of an infimum; however, he took for granted the existence of a function that attains the minimum.

  7. Dirichlet boundary condition - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_boundary_condition

    For example, the following would be considered Dirichlet boundary conditions: In mechanical engineering and civil engineering (beam theory), where one end of a beam is held at a fixed position in space. In heat transfer, where a surface is held at a fixed temperature. In electrostatics, where a node of a circuit is held at a fixed voltage.

  8. L-function - Wikipedia

    en.wikipedia.org/wiki/L-function

    An L-series is a Dirichlet series, usually convergent on a half-plane, that may give rise to an L-function via analytic continuation. The Riemann zeta function is an example of an L-function, and some important conjectures involving L-functions are the Riemann hypothesis and its generalizations.

  9. Dirichlet convolution - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_convolution

    The set of arithmetic functions forms a commutative ring, the Dirichlet ring, under pointwise addition, where f + g is defined by (f + g)(n) = f(n) + g(n), and Dirichlet convolution. The multiplicative identity is the unit function ε defined by ε ( n ) = 1 if n = 1 and ε ( n ) = 0 if n > 1 .