Search results
Results from the WOW.Com Content Network
Furthermore, a global maximum (or minimum) either must be a local maximum (or minimum) in the interior of the domain, or must lie on the boundary of the domain. So a method of finding a global maximum (or minimum) is to look at all the local maxima (or minima) in the interior, and also look at the maxima (or minima) of the points on the ...
The geometric interpretation of Newton's method is that at each iteration, it amounts to the fitting of a parabola to the graph of () at the trial value , having the same slope and curvature as the graph at that point, and then proceeding to the maximum or minimum of that parabola (in higher dimensions, this may also be a saddle point), see below.
It is calculated as the difference between the largest and smallest values (also known as the sample maximum and minimum). [1] It is expressed in the same units as the data. The range provides an indication of statistical dispersion. Since it only depends on two of the observations, it is most useful in representing the dispersion of small data ...
A saddle point (in red) on the graph of z = x 2 − y 2 (hyperbolic paraboloid). In mathematics, a saddle point or minimax point [1] is a point on the surface of the graph of a function where the slopes (derivatives) in orthogonal directions are all zero (a critical point), but which is not a local extremum of the function. [2]
A turning point may be either a relative maximum or a relative minimum (also known as local minimum and maximum). A turning point is thus a stationary point, but not all stationary points are turning points. If the function is twice differentiable, the isolated stationary points that are not turning points are horizontal inflection points.
The maximum of a subset of a preordered set is an element of which is greater than or equal to any other element of , and the minimum of is again defined dually. In the particular case of a partially ordered set , while there can be at most one maximum and at most one minimum there may be multiple maximal or minimal elements.
Global optimization is distinguished from local optimization by its focus on finding the minimum or maximum over the given set, as opposed to finding local minima or maxima. Finding an arbitrary local minimum is relatively straightforward by using classical local optimization methods. Finding the global minimum of a function is far more ...
The original (unweighted) minimum covering circle problem corresponds to the case when all weights are equal to 1. As with the unweighted problem, the weighted problem may be solved in linear time in any space of bounded dimension, using approaches closely related to bounded dimension linear programming algorithms, although slower algorithms ...