Search results
Results from the WOW.Com Content Network
A lattice is an abstract structure studied in the mathematical subdisciplines of order theory and abstract algebra.It consists of a partially ordered set in which every pair of elements has a unique supremum (also called a least upper bound or join) and a unique infimum (also called a greatest lower bound or meet).
The division lattice is an infinite complete bounded distributive lattice whose elements are the natural numbers ordered by divisibility. Its least element is 1 ...
For associative algebras, the definition can be simplified as follows: a non-zero associative algebra over a field is a division algebra if and only if it has a multiplicative identity element 1 and every non-zero element a has a multiplicative inverse (i.e. an element x with ax = xa = 1).
In mathematics, the lattice of subgroups of a group is the lattice whose elements are the subgroups of , with the partial ordering being set inclusion. In this lattice, the join of two subgroups is the subgroup generated by their union , and the meet of two subgroups is their intersection .
A lattice (L,∨,∧) is distributive if the following additional identity holds for all x, y, and z in L: x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z). Viewing lattices as partially ordered sets, this says that the meet operation preserves non-empty finite joins. It is a basic fact of lattice theory that the above condition is equivalent to its ...
In geometry and group theory, a lattice in the real coordinate space is an infinite set of points in this space with the properties that coordinate-wise addition or subtraction of two points in the lattice produces another lattice point, that the lattice points are all separated by some minimum distance, and that every point in the space is within some maximum distance of a lattice point.
Discover the best free online games at AOL.com - Play board, card, casino, puzzle and many more online games while chatting with others in real-time.
This notation may clash with other notation, as in the case of the lattice (N, |), i.e., the non-negative integers ordered by divisibility. In this locally finite lattice, the infimal element denoted "0" for the lattice theory is the number 1 in the set N and the supremal element denoted "1" for the lattice theory is the number 0 in the set N.