enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Transcription (biology) - Wikipedia

    en.wikipedia.org/wiki/Transcription_(biology)

    The non-template (sense) strand of DNA is called the coding strand, because its sequence is the same as the newly created RNA transcript (except for the substitution of uracil for thymine). This is the strand that is used by convention when presenting a DNA sequence.

  3. Coding strand - Wikipedia

    en.wikipedia.org/wiki/Coding_strand

    By convention, the coding strand is the strand used when displaying a DNA sequence. It is presented in the 5' to 3' direction. Wherever a gene exists on a DNA molecule, one strand is the coding strand (or sense strand), and the other is the noncoding strand (also called the antisense strand, [3] anticoding strand, template strand or transcribed ...

  4. DNA mismatch repair - Wikipedia

    en.wikipedia.org/wiki/DNA_mismatch_repair

    The damage is repaired by recognition of the deformity caused by the mismatch, determining the template and non-template strand, and excising the wrongly incorporated base and replacing it with the correct nucleotide. The removal process involves more than just the mismatched nucleotide itself.

  5. Sense (molecular biology) - Wikipedia

    en.wikipedia.org/wiki/Sense_(molecular_biology)

    RNA strand that is transcribed from the noncoding (template/antisense) strand. Note 1: Except for the fact that all thymines are now uracils (T → U), it is complementary to the noncoding (template/antisense) DNA strand and identical to the coding (nontemplate/sense) DNA strand. 3′CGCUAUAGCGUUU 5′ mRNA antisense transcript

  6. Non-homologous end joining - Wikipedia

    en.wikipedia.org/wiki/Non-homologous_end_joining

    Non-homologous end joining (NHEJ) is a pathway that repairs double-strand breaks in DNA. It is called "non-homologous" because the break ends are directly ligated without the need for a homologous template, in contrast to homology directed repair (HDR), which requires a homologous sequence to guide repair.

  7. DNA and RNA codon tables - Wikipedia

    en.wikipedia.org/wiki/DNA_and_RNA_codon_tables

    [2] [3] The mRNA sequence is determined by the sequence of genomic DNA. [4] In this context, the standard genetic code is referred to as translation table 1. [3] It can also be represented in a DNA codon table. The DNA codons in such tables occur on the sense DNA strand and are arranged in a 5 ′-to-3 ′ direction.

  8. Sense strand - Wikipedia

    en.wikipedia.org/wiki/Sense_strand

    The sense strand is the strand of DNA that has the same sequence as the mRNA, which takes the antisense strand as its template during transcription, and eventually undergoes (typically, not always) translation into a protein. The antisense strand is thus responsible for the RNA that is later translated to protein, while the sense strand ...

  9. Reading frame - Wikipedia

    en.wikipedia.org/wiki/Reading_frame

    Any given sequence of DNA can therefore be read in six different ways: Three reading frames in one direction (starting at different nucleotides) and three in the opposite direction. During transcription, the RNA polymerase read the template DNA strand in the 3′→5′ direction, but the mRNA is formed in the 5′ to 3′ direction. [3]