Search results
Results from the WOW.Com Content Network
For function that manipulate strings, modern object-oriented languages, like C# and Java have immutable strings and return a copy (in newly allocated dynamic memory), while others, like C manipulate the original string unless the programmer copies data to a new string. See for example Concatenation below.
The string spelled by the edges from the root to such a node is a longest repeated substring. The problem of finding the longest substring with at least k {\displaystyle k} occurrences can be solved by first preprocessing the tree to count the number of leaf descendants for each internal node, and then finding the deepest node with at least k ...
In computer science, the Knuth–Morris–Pratt algorithm (or KMP algorithm) is a string-searching algorithm that searches for occurrences of a "word" W within a main "text string" S by employing the observation that when a mismatch occurs, the word itself embodies sufficient information to determine where the next match could begin, thus bypassing re-examination of previously matched characters.
A string-searching algorithm, sometimes called string-matching algorithm, is an algorithm that searches a body of text for portions that match by pattern. A basic example of string searching is when the pattern and the searched text are arrays of elements of an alphabet ( finite set ) Σ.
Dynamic binding (or late binding or virtual binding) is name binding performed as the program is running. [2] An example of a static binding is a direct C function call: the function referenced by the identifier cannot change at runtime. An example of dynamic binding is dynamic dispatch, as in a C++ virtual method call.
The occurrences of a given pattern in a given string can be found with a string searching algorithm. Finding the longest string which is equal to a substring of two or more strings is known as the longest common substring problem. In the mathematical literature, substrings are also called subwords (in America) or factors (in Europe).
In many programming languages, a particular syntax of strings is used to represent regular expressions, which are patterns describing string characters. However, it is possible to perform some string pattern matching within the same framework that has been discussed throughout this article.
A naive string matching algorithm compares the given pattern against all positions in the given text. Each comparison takes time proportional to the length of the pattern, and the number of positions is proportional to the length of the text. Therefore, the worst-case time for such a method is proportional to the product of the two lengths.