Search results
Results from the WOW.Com Content Network
A proton-exchange membrane, or polymer-electrolyte membrane (PEM), is a semipermeable membrane generally made from ionomers and designed to conduct protons while acting as an electronic insulator and reactant barrier, e.g. to oxygen and hydrogen gas. [1]
The proton-exchange membrane is commonly made of materials such as perfluorosulfonic acid (PFSA, sold commercially as Nafion and Aquivion), which minimize gas crossover and short circuiting of the fuel cell. A disadvantage of fluor containing polymers is the fact that during production (and disposal) PFAS products are formed.
Whereas the common PEM fuel cell, also called Low Temperature Proton Exchange Membrane fuel cell (LT-PEM), must usually be operated with hydrogen with high purity of more than 99.9 % the HT-PEM fuel cell is less sensitive to impurities and thus is typically operated with reformate gas with hydrogen concentration of about 50 to 75 %.
[2] [3] [4] Nafion has received a considerable amount of attention as a proton conductor for proton exchange membrane (PEM) fuel cells because of its excellent chemical and mechanical stability in the harsh conditions of this application. The chemical basis of Nafion's ion-conductive properties remain a focus of extensive research. [2]
Proton exchange membrane (PEM) electrolysis is the electrolysis of water in a cell equipped with a solid polymer electrolyte (SPE) [3] that is responsible for the conduction of protons, separation of product gases, and electrical insulation of the electrodes. The PEM electrolyzer was introduced to overcome the issues of partial load, low ...
The technology shares the thermal and kinetic advantages [which?] of high temperature molten carbonate and solid oxide fuel cells, while exhibiting all of the intrinsic benefits of proton conduction in proton-exchange membrane fuel cells (PEMFC) and phosphoric acid fuel cells (PAFC). PCFCs exhaust water at the cathode and unused fuel, fuel ...
Proton-exchange membrane fuel cell (PEM) A fuel cell incorporating a solid polymer membrane used as its electrolyte. Protons (H+) are transported from the anode to the cathode. The operating temperature range is generally 60–100 °C for Low Temperature Proton-exchange membrane fuel cell (LT-PEMFC). [57]
Proton exchange membrane Proton exchange membrane (PEM) is a semipermeable membrane generally made from ionomers and designed to conduct protons while being impermeable to gases such as oxygen or hydrogen. Proton exchange membrane fuel cell Proton exchange membrane fuel cell (PEMFC) a type of fuel cell based on a polymer electrolyte membrane.