enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cardinality of the continuum - Wikipedia

    en.wikipedia.org/wiki/Cardinality_of_the_continuum

    Cantor defined cardinality in terms of bijective functions: two sets have the same cardinality if, and only if, there exists a bijective function between them. Between any two real numbers a < b , no matter how close they are to each other, there are always infinitely many other real numbers, and Cantor showed that they are as many as those ...

  3. Cardinal characteristic of the continuum - Wikipedia

    en.wikipedia.org/wiki/Cardinal_characteristic_of...

    As is standard in set theory, we denote by the least infinite ordinal, which has cardinality ; it may be identified with the set of natural numbers.. A number of cardinal characteristics naturally arise as cardinal invariants for ideals which are closely connected with the structure of the reals, such as the ideal of Lebesgue null sets and the ideal of meagre sets.

  4. Cardinality - Wikipedia

    en.wikipedia.org/wiki/Cardinality

    A crude sense of cardinality, an awareness that groups of things or events compare with other groups by containing more, fewer, or the same number of instances, is observed in a variety of present-day animal species, suggesting an origin millions of years ago. [4]

  5. Continuum hypothesis - Wikipedia

    en.wikipedia.org/wiki/Continuum_hypothesis

    Cantor gave two proofs that the cardinality of the set of integers is strictly smaller than that of the set of real numbers (see Cantor's first uncountability proof and Cantor's diagonal argument). His proofs, however, give no indication of the extent to which the cardinality of the integers is less than that of the real numbers.

  6. HyperLogLog - Wikipedia

    en.wikipedia.org/wiki/HyperLogLog

    The HyperLogLog has three main operations: add to add a new element to the set, count to obtain the cardinality of the set and merge to obtain the union of two sets. Some derived operations can be computed using the inclusion–exclusion principle like the cardinality of the intersection or the cardinality of the difference between two HyperLogLogs combining the merge and count operations.

  7. Aleph number - Wikipedia

    en.wikipedia.org/wiki/Aleph_number

    The cardinality of any infinite ordinal number is an aleph number. Every aleph is the cardinality of some ordinal. The least of these is its initial ordinal. Any set whose cardinality is an aleph is equinumerous with an ordinal and is thus well-orderable. Each finite set is well-orderable, but does not have an aleph as its cardinality.

  8. Controversy over Cantor's theory - Wikipedia

    en.wikipedia.org/wiki/Controversy_over_Cantor's...

    From this and the fact that () and have different cardinalities, he concludes that () has greater cardinality than . This conclusion uses his 1878 definition: If A and B have different cardinalities, then either B is equinumerous with a subset of A (in this case, B has less cardinality than A ) or A is equinumerous with a subset of B (in this ...

  9. Count-distinct problem - Wikipedia

    en.wikipedia.org/wiki/Count-distinct_problem

    In computer science, the count-distinct problem [1] (also known in applied mathematics as the cardinality estimation problem) is the problem of finding the number of distinct elements in a data stream with repeated elements. This is a well-known problem with numerous applications.