Search results
Results from the WOW.Com Content Network
A reactor vessel head for a pressurized water reactor. This structure is attached to the top of the reactor vessel body. It contains penetrations to allow the control rod driving mechanism to attach to the control rods in the fuel assembly. The coolant level measurement probe also enters the vessel through the reactor vessel head.
2: reactor cover [10] or vessel head [11] 3: Reactor pressure vessel 4: inlet and outlet nozzles 5: reactor core barrel or core shroud 6: reactor core 7: fuel rods The arrangement of hexagonal fuel assemblies compared to a Westinghouse PWR design. Note that there are 163 assemblies on this hexagonal arrangement and 193 on the Westinghouse ...
The reactor pressure vessel is manufactured from ductile steel but, as the plant is operated, neutron flux from the reactor causes this steel to become less ductile. Eventually the ductility of the steel will reach limits determined by the applicable boiler and pressure vessel standards, and the pressure vessel must be repaired or replaced ...
The entire reactor assembly was placed in a large pressure vessel. Due to the size of the pile, only the reactor core itself was placed within the steel pressure assembly, which was then surrounded by a concrete confinement building (or biological shield). As there was no water in the core, and thus no possibility of a steam explosion, the ...
English: Schematic diagram of an Advanced Gas-cooled Reactor type nuclear reactor 1. Charge tubes 2. Control rods 3. Graphite moderator 4. Fuel assemblies 5. Concrete pressure vessel and radiation shielding 6. Gas circulator 7. Water 8. Water circulator 9. Heat exchanger 10. Steam
It houses the vessel of the reactor, which is annular, made of an inner and outer cylindrical wall and top and bottom metal plates that cover the space between the inner and outer walls, without covering the space surrounded by the vessel. The reactor vessel is an annular steel cylinder with hollow walls and pressurized with nitrogen gas, with ...
BWR designs operate constantly at about half the primary system pressure of PWR designs while producing the same quantity and quality of steam in a compact system: 1020 psi (7 MPa) reactor vessel pressure, and 288 °C temperature for BWR which is lower than 2240 psi (14.4 MPa) and 326 °C for PWR.
English: Generation II nuclear reactor vessel sizes of similar power output: PWR: typical Westinghouse 4 loop reactor pressure vessel (3411MWt, 1125MWe). CANDU: Darlington reactor calandria (2657MWt, 935MWe). BWR-4 reactor pressure vessel (3293MWt, 1098MWe). RBMK-1000 reactor steel vessel, biological shields, and water tank (3200MWt, 1000MWe).