Search results
Results from the WOW.Com Content Network
Argon constitutes 0.934% by volume and 1.288% by mass of Earth's atmosphere. [23] Air is the primary industrial source of purified argon products. Argon is isolated from air by fractionation, most commonly by cryogenic fractional distillation, a process that also produces purified nitrogen, oxygen, neon, krypton and xenon. [24]
Argon (18 Ar) has 26 known isotopes, from 29 Ar to 54 Ar, of which three are stable (36 Ar, 38 Ar, and 40 Ar). On Earth, 40 Ar makes up 99.6% of natural argon. The longest-lived radioactive isotopes are 39 Ar with a half-life of 268 years, 42 Ar with a half-life of 32.9 years, and 37 Ar with a half-life of 35.04 days.
For other isotopes, the isotopic mass is usually within 0.1 u of the mass number. For example, 35 Cl (17 protons and 18 neutrons) has a mass number of 35 and an isotopic mass of 34.96885. [7] The difference of the actual isotopic mass minus the mass number of an atom is known as the mass excess, [8] which for 35 Cl is –0.03115.
An example of why "conventional terrestrial sources" must be specified in giving standard atomic weight values is the element argon. Between locations in the Solar System, the atomic weight of argon varies as much as 10%, due to extreme variance in isotopic composition. Where the major source of argon is the decay of 40 K in rocks, 40
No undiscovered elements are expected to be stable; ... up to three for some mass numbers, ... argon: 3 — 40 Ar: 36 Ar: 38 Ar: 2 ...
ISO TR 29922-2017 provides a definition for standard dry air which specifies an air molar mass of 28,965 46 ± 0,000 17 kg·kmol-1. [2] GPA 2145:2009 is published by the Gas Processors Association. It provides a molar mass for air of 28.9625 g/mol, and provides a composition for standard dry air as a footnote. [3]
This is a list of chemical elements and their atomic properties, ordered by atomic number (Z).. Since valence electrons are not clearly defined for the d-block and f-block elements, there not being a clear point at which further ionisation becomes unprofitable, a purely formal definition as number of electrons in the outermost shell has been used.
The argon found in Earth's atmosphere is 99.6% 40 Ar; whereas the argon in the Sun – and presumably in the primordial material that condensed into the planets – is mostly 36 Ar, with less than 15% of 38 Ar. It follows that most of Earth's argon derives from potassium-40 that decayed into argon-40, which eventually escaped to the atmosphere.