enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Number Forms - Wikipedia

    en.wikipedia.org/wiki/Number_Forms

    1 ⁄ 7: 0.142... Vulgar Fraction One Seventh 2150 8528 ⅑ 1 ⁄ 9: 0.111... Vulgar Fraction One Ninth 2151 8529 ⅒ 1 ⁄ 10: 0.1 Vulgar Fraction One Tenth 2152 8530 ⅓ 1 ⁄ 3: 0.333... Vulgar Fraction One Third 2153 8531 ⅔ 2 ⁄ 3: 0.666... Vulgar Fraction Two Thirds 2154 8532 ⅕ 1 ⁄ 5: 0.2 Vulgar Fraction One Fifth 2155 8533 ⅖ 2 ...

  3. Look-and-say sequence - Wikipedia

    en.wikipedia.org/wiki/Look-and-say_sequence

    1 is read off as "one 1" or 11. 11 is read off as "two 1s" or 21. 21 is read off as "one 2, one 1" or 1211. 1211 is read off as "one 1, one 2, two 1s" or 111221. 111221 is read off as "three 1s, two 2s, one 1" or 312211. The look-and-say sequence was analyzed by John Conway [1] after he was introduced to it by one of his students at a party. [2 ...

  4. Fraction - Wikipedia

    en.wikipedia.org/wiki/Fraction

    Unit fractions can also be expressed using negative exponents, as in 21, which represents 1/2, and 22, which represents 1/(2 2) or 1/4. A dyadic fraction is a common fraction in which the denominator is a power of two, e.g. ⁠ 1 / 8 ⁠ = ⁠ 1 / 2 3 ⁠. In Unicode, precomposed fraction characters are in the Number Forms block.

  5. Fixed-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Fixed-point_arithmetic

    A fixed-point representation of a fractional number is essentially an integer that is to be implicitly multiplied by a fixed scaling factor. For example, the value 1.23 can be stored in a variable as the integer value 1230 with implicit scaling factor of 1/1000 (meaning that the last 3 decimal digits are implicitly assumed to be a decimal fraction), and the value 1 230 000 can be represented ...

  6. 1 + 2 + 3 + 4 + ⋯ - ⋯ - Wikipedia

    en.wikipedia.org/wiki/1_%2B_2_%2B_3_%2B_4_%2B_%E...

    where f (2k−1) is the (2k − 1)th derivative of f and B 2k is the (2k)th Bernoulli number: B 2 = ⁠ 1 / 6 ⁠, B 4 = ⁠− + 1 / 30 ⁠, and so on. Setting f ( x ) = x , the first derivative of f is 1, and every other term vanishes, so [ 15 ]

  7. Magic square - Wikipedia

    en.wikipedia.org/wiki/Magic_square

    For odd square, since there are (n - 1)/2 same sided rows or columns, there are (n - 1)(n - 3)/8 pairs of such rows or columns that can be interchanged. Thus, there are 2 (n - 1)(n - 3)/8 × 2 (n - 1)(n - 3)/8 = 2 (n - 1)(n - 3)/4 equivalent magic squares obtained by combining such interchanges. Interchanging all the same sided rows flips each ...

  8. Conway chained arrow notation - Wikipedia

    en.wikipedia.org/wiki/Conway_chained_arrow_notation

    Conway chained arrow notation, created by mathematician John Horton Conway, is a means of expressing certain extremely large numbers. [1] It is simply a finite sequence of positive integers separated by rightward arrows, e.g. . As with most combinatorial notations, the definition is recursive. In this case the notation eventually resolves to ...

  9. Unary coding - Wikipedia

    en.wikipedia.org/wiki/Unary_coding

    Unary coding, [nb 1] or the unary numeral system and also sometimes called thermometer code, is an entropy encoding that represents a natural number, n, with a code of length n + 1 ( or n), usually n ones followed by a zero (if natural number is understood as non-negative integer) or with n − 1 ones followed by a zero (if natural number is understood as strictly positive integer).