enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Structural engineering theory - Wikipedia

    en.wikipedia.org/wiki/Structural_engineering_theory

    Strength depends upon material properties. The strength of a material depends on its capacity to withstand axial stress, shear stress, bending, and torsion.The strength of a material is measured in force per unit area (newtons per square millimetre or N/mm², or the equivalent megapascals or MPa in the SI system and often pounds per square inch psi in the United States Customary Units system).

  3. Stress–strain curve - Wikipedia

    en.wikipedia.org/wiki/Stress–strain_curve

    After the neck has formed in the material, further plastic deformation is concentrated in the neck while the remainder of the material undergoes elastic contraction owing to the decrease in tensile force. The stress–strain curve for a ductile material can be approximated using the Ramberg–Osgood equation. [2]

  4. Young's modulus - Wikipedia

    en.wikipedia.org/wiki/Young's_modulus

    Young's modulus is the slope of the linear part of the stress–strain curve for a material under tension or compression.. Young's modulus (or Young modulus) is a mechanical property of solid materials that measures the tensile or compressive stiffness when the force is applied lengthwise.

  5. Strain (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Strain_(mechanics)

    In mechanics, strain is defined as relative deformation, compared to a reference position configuration. Different equivalent choices may be made for the expression of a strain field depending on whether it is defined with respect to the initial or the final configuration of the body and on whether the metric tensor or its dual is considered.

  6. Stress–strain analysis - Wikipedia

    en.wikipedia.org/wiki/Stress–strain_analysis

    Strain is the ratio of change in length to the original length, when a given body is subjected to some external force (Strain= change in length÷the original length). Stress analysis is a primary task for civil , mechanical and aerospace engineers involved in the design of structures of all sizes, such as tunnels , bridges and dams , aircraft ...

  7. Huber's equation - Wikipedia

    en.wikipedia.org/wiki/Huber's_equation

    Huber's equation, first derived by a Polish engineer Tytus Maksymilian Huber, is a basic formula in elastic material tension calculations, an equivalent of the equation of state, but applying to solids. In most simple expression and commonly in use it looks like this: [1]

  8. Strain rate - Wikipedia

    en.wikipedia.org/wiki/Strain_rate

    The definition of strain rate was first introduced in 1867 by American metallurgist Jade LeCocq, who defined it as "the rate at which strain occurs. It is the time rate of change of strain." In physics the strain rate is generally defined as the derivative of the strain with respect to time. Its precise definition depends on how strain is measured.

  9. Stress (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Stress_(mechanics)

    Isotropic tensile stress. Top left: Each face of a cube of homogeneous material is pulled by a force with magnitude F, applied evenly over the entire face whose area is A. The force across any section S of the cube must balance the forces applied below the section.