enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Two-body problem - Wikipedia

    en.wikipedia.org/wiki/Two-body_problem

    Solving the equation for r(t) is the key to the two-body problem. The solution depends on the specific force between the bodies, which is defined by (). For the case where () follows an inverse-square law, see the Kepler problem.

  3. Two-body problem in general relativity - Wikipedia

    en.wikipedia.org/wiki/Two-body_problem_in...

    The two-body problem in general relativity (or relativistic two-body problem) is the determination of the motion and gravitational field of two bodies as described by the field equations of general relativity. Solving the Kepler problem is essential to calculate the bending of light by gravity and the motion of a planet orbiting its sun.

  4. Kepler problem - Wikipedia

    en.wikipedia.org/wiki/Kepler_problem

    The inverse square law behind the Kepler problem is the most important central force law. [1]: 92 The Kepler problem is important in celestial mechanics, since Newtonian gravity obeys an inverse square law. Examples include a satellite moving about a planet, a planet about its sun, or two binary stars about each other.

  5. Specific orbital energy - Wikipedia

    en.wikipedia.org/wiki/Specific_orbital_energy

    If the angle between v and g is acute, for example in a landing (on a celestial body without atmosphere) and in a transfer to a circular orbit around a celestial body when arriving from outside, this means applying the delta-v as late as possible. When passing by a planet it means applying thrust when nearest to the planet.

  6. Exact solutions in general relativity - Wikipedia

    en.wikipedia.org/wiki/Exact_solutions_in_general...

    For example, the Ernst equation is a nonlinear partial differential equation somewhat resembling the nonlinear Schrödinger equation (NLS). But recall that the conformal group on Minkowski spacetime is the symmetry group of the Maxwell equations. Recall too that solutions of the heat equation can be found by assuming a scaling Ansatz.

  7. List of quantum-mechanical systems with analytical solutions

    en.wikipedia.org/wiki/List_of_quantum-mechanical...

    which is an eigenvalue equation. Very often, only numerical solutions to the Schrödinger equation can be found for a given physical system and its associated potential energy. However, there exists a subset of physical systems for which the form of the eigenfunctions and their associated energies, or eigenvalues, can be found.

  8. Orbit equation - Wikipedia

    en.wikipedia.org/wiki/Orbit_equation

    In astrodynamics, an orbit equation defines the path of orbiting body around central body relative to , without specifying position as a function of time.Under standard assumptions, a body moving under the influence of a force, directed to a central body, with a magnitude inversely proportional to the square of the distance (such as gravity), has an orbit that is a conic section (i.e. circular ...

  9. Lippmann–Schwinger equation - Wikipedia

    en.wikipedia.org/wiki/Lippmann–Schwinger_equation

    For example, in a collision between electrons and molecules, there may be tens or hundreds of particles involved. But the phenomenon may be reduced to a two-body problem by describing all the molecule constituent particle potentials together with a pseudopotential. [5] In these cases, the Lippmann–Schwinger equations may be used.