Search results
Results from the WOW.Com Content Network
There are two types of continuous cooling diagrams drawn for practical purposes. Type 1: This is the plot beginning with the transformation start point, cooling with a specific transformation fraction and ending with a transformation finish temperature for all products against transformation time for each cooling curve.
A cooling curve of naphthalene from liquid to solid. A cooling curve is a line graph that represents the change of phase of matter, typically from a gas to a solid or a liquid to a solid. The independent variable (X-axis) is time and the dependent variable (Y-axis) is temperature. [1] Below is an example of a cooling curve used in castings.
Examination of cooling and derivative curves is done by using appropriate data analysis software. The process consists of plotting, smoothing and curve fitting as well as identifying the reaction points and characteristic parameters. This procedure is known as Computer-Aided Cooling Curve Thermal Analysis. [4]
The specific cooling rate that is necessary to avoid the formation of pearlite is a product of the chemistry of the austenite phase and thus the alloy being processed. The actual cooling rate is a product of both the quench severity, which is influenced by quench media, agitation, load (quenchant ratio, etc.), and the thickness and geometry of ...
The main feature of thermodynamic diagrams is the equivalence between the area in the diagram and energy. When air changes pressure and temperature during a process and prescribes a closed curve within the diagram the area enclosed by this curve is proportional to the energy which has been gained or released by the air.
Isothermal transformation diagrams (also known as time-temperature-transformation (TTT) diagrams) are plots of temperature versus time (usually on a logarithmic scale). They are generated from percentage transformation-vs time measurements, and are useful for understanding the transformations of an alloy steel at elevated temperatures.
These materials tend to form a skin in open air molds, therefore they are known as skin forming alloys. [23] For materials with a wide freezing range, greater than 110 °C (230 °F), [23] much more of the casting occupies the mushy or slushy zone (the temperature range between the solidus and the liquidus), which leads to small pockets of ...
English: Example of a cooling curve of a pure metal or eutectic alloy, with various aspects pointed out. Based on image from Degarmo, E. Paul; Black, J T.; Kohser, Ronald A. (2003), Materials and Processes in Manufacturing (9th ed.), Wiley, ISBN 0-471-65653-4.