Search results
Results from the WOW.Com Content Network
Various semiconductor diodes. Left: A four-diode bridge rectifier.Next to it is a 1N4148 signal diode.On the far right is a Zener diode.In most diodes, a white or black painted band identifies the cathode into which electrons will flow when the diode is conducting.
Diode logic (or diode-resistor logic) constructs AND and OR logic gates with diodes and resistors. An active device ( vacuum tubes with control grids in early electronic computers , then transistors in diode–transistor logic ) is additionally required to provide logical inversion (NOT) for functional completeness and amplification for voltage ...
Schematic of basic two-input DTL NAND gate. R3, R4 and V− shift the positive output voltage of the input DL stage below the ground (to cut off the transistor at low input voltage). Diode–transistor logic (DTL) is a class of digital circuits that is the direct ancestor of transistor–transistor logic.
The two types of diode are in fact constructed in similar ways and both effects are present in diodes of this type. In silicon diodes up to about 5.6 volts, the Zener effect is the predominant effect and shows a marked negative temperature coefficient. Above 5.6 volts, the avalanche effect dominates and exhibits a positive temperature coefficient.
In electronics, a step recovery diode (SRD, snap-off diode or charge-storage diode or memory varactor [a]) is a semiconductor junction diode with the ability to generate extremely short pulses. It has a variety of uses in microwave (MHz to GHz range) electronics as pulse generator or parametric amplifier .
The PIN diode obeys the standard diode equation for low-frequency signals. At higher frequencies, the diode looks like an almost perfect (very linear, even for large signals) resistor. The P-I-N diode has a relatively large stored charge adrift in a thick intrinsic region. At a low-enough frequency, the stored charge can be fully swept and the ...
A transient-voltage-suppression diode can respond to over-voltages faster than other common over-voltage protection components such as varistors or gas discharge tubes. The actual clamping occurs in roughly one picosecond , but in a practical circuit the inductance of the wires leading to the device imposes a higher limit.
Band diagram for p–n junction at equilibrium. The depletion region is shaded. φ B denotes band shift for holes and charges level. See P–n diode. The inner workings of a light emitting diode, showing circuit (top) and band diagram when a bias voltage is applied (bottom).