enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Black-body radiation - Wikipedia

    en.wikipedia.org/wiki/Black-body_radiation

    For a black body (a perfect absorber) there is no reflected radiation, and so the spectral radiance is entirely due to emission. In addition, a black body is a diffuse emitter (its emission is independent of direction). Blackbody radiation becomes a visible glow of light if the temperature of the object is high enough. [19]

  3. Black body - Wikipedia

    en.wikipedia.org/wiki/Black_body

    A black body or blackbody is an idealized physical body that absorbs all incident electromagnetic radiation, regardless of frequency or angle of incidence. The radiation emitted by a black body in thermal equilibrium with its environment is called black-body radiation. The name "black body" is given because it absorbs all colors of light.

  4. Brightness temperature - Wikipedia

    en.wikipedia.org/wiki/Brightness_temperature

    For a black body, Planck's law gives: [8] [11] = where (the Intensity or Brightness) is the amount of energy emitted per unit surface area per unit time per unit solid angle and in the frequency range between and +; is the temperature of the black body; is the Planck constant; is frequency; is the speed of light; and is the Boltzmann constant.

  5. Planck's law - Wikipedia

    en.wikipedia.org/wiki/Planck's_law

    The importance of the Lummer and Kurlbaum cavity radiation source was that it was an experimentally accessible source of black-body radiation, as distinct from radiation from a simply exposed incandescent solid body, which had been the nearest available experimental approximation to black-body radiation over a suitable range of temperatures.

  6. Cosmic microwave background - Wikipedia

    en.wikipedia.org/wiki/Cosmic_microwave_background

    The cosmic microwave background radiation is an emission of uniform black body thermal energy coming from all directions. Intensity of the CMB is expressed in kelvin (K), the SI unit of temperature. The CMB has a thermal black body spectrum at a temperature of 2.725 48 ± 0.000 57 K. [4] Variations in intensity are expressed as variations in ...

  7. Stefan–Boltzmann law - Wikipedia

    en.wikipedia.org/wiki/Stefan–Boltzmann_law

    The temperature of stars other than the Sun can be approximated using a similar means by treating the emitted energy as a black body radiation. [28] So: L = 4 π R 2 σ T 4 {\displaystyle L=4\pi R^{2}\sigma T^{4}} where L is the luminosity , σ is the Stefan–Boltzmann constant, R is the stellar radius and T is the effective temperature .

  8. Hawking radiation - Wikipedia

    en.wikipedia.org/wiki/Hawking_radiation

    Hawking radiation is black body radiation released outside a black hole's event horizon due to quantum effects according to a model developed by Stephen Hawking in 1974. [1] The radiation was not predicted by previous models which assumed that once electromagnetic radiation is inside the event horizon, it cannot escape.

  9. Limb darkening - Wikipedia

    en.wikipedia.org/wiki/Limb_darkening

    The radiation emitted from a gas is approximately black-body radiation, the intensity of which is proportional to the fourth power of the temperature. Therefore, even in line of sight directions where the optical depth is effectively infinite, the emitted energy comes from cooler parts of the photosphere, resulting in less total energy reaching ...