enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Anomaly detection - Wikipedia

    en.wikipedia.org/wiki/Anomaly_detection

    ELKI is an open-source Java data mining toolkit that contains several anomaly detection algorithms, as well as index acceleration for them. PyOD is an open-source Python library developed specifically for anomaly detection. [56] scikit-learn is an open-source Python library that contains some algorithms for unsupervised anomaly detection.

  3. Isolation forest - Wikipedia

    en.wikipedia.org/wiki/Isolation_forest

    Isolation Forest is an algorithm for data anomaly detection using binary trees.It was developed by Fei Tony Liu in 2008. [1] It has a linear time complexity and a low memory use, which works well for high-volume data.

  4. Local outlier factor - Wikipedia

    en.wikipedia.org/wiki/Local_outlier_factor

    In anomaly detection, the local outlier factor (LOF) is an algorithm proposed by Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng and Jörg Sander in 2000 for finding anomalous data points by measuring the local deviation of a given data point with respect to its neighbours.

  5. List of datasets for machine-learning research - Wikipedia

    en.wikipedia.org/wiki/List_of_datasets_for...

    Anomaly detection: 2020 (continually updated) [329] [330] Iurii D. Katser and Vyacheslav O. Kozitsin On the Evaluation of Unsupervised Outlier Detection: Measures, Datasets, and an Empirical Study Most data files are adapted from UCI Machine Learning Repository data, some are collected from the literature.

  6. DBSCAN - Wikipedia

    en.wikipedia.org/wiki/DBSCAN

    It is a density-based clustering non-parametric algorithm: given a set of points in some space, it groups together points that are closely packed (points with many nearby neighbors), and marks as outliers points that lie alone in low-density regions (those whose nearest neighbors are too far away). DBSCAN is one of the most commonly used and ...

  7. Network behavior anomaly detection - Wikipedia

    en.wikipedia.org/wiki/Network_Behavior_Anomaly...

    Network behavior anomaly detection (NBAD) is a security technique that provides network security threat detection. It is a complementary technology to systems that detect security threats based on packet signatures. [1] NBAD is the continuous monitoring of a network for unusual events or trends.

  8. k-SVD - Wikipedia

    en.wikipedia.org/wiki/K-SVD

    In applied mathematics, k-SVD is a dictionary learning algorithm for creating a dictionary for sparse representations, via a singular value decomposition approach. k-SVD is a generalization of the k-means clustering method, and it works by iteratively alternating between sparse coding the input data based on the current dictionary, and updating the atoms in the dictionary to better fit the data.

  9. Extreme learning machine - Wikipedia

    en.wikipedia.org/wiki/Extreme_learning_machine

    Extreme learning machines are feedforward neural networks for classification, regression, clustering, sparse approximation, compression and feature learning with a single layer or multiple layers of hidden nodes, where the parameters of hidden nodes (not just the weights connecting inputs to hidden nodes) need to be tuned.