Search results
Results from the WOW.Com Content Network
The Haber process relies on catalysts that accelerate the scission of these bonds. Two opposing considerations are relevant: the equilibrium position and the reaction rate . At room temperature, the equilibrium is in favor of ammonia, but the reaction does not proceed at a detectable rate due to its high activation energy.
Abiological nitrogen fixation describes chemical processes that fix (react with) N 2, usually with the goal of generating ammonia. The dominant technology for abiological nitrogen fixation is the Haber process, which uses iron-based heterogeneous catalysts and H 2 to convert N 2 to NH 3. This article focuses on homogeneous (soluble) catalysts ...
Born–Haber cycles are used primarily as a means of calculating lattice energy (or more precisely enthalpy [note 1]), which cannot otherwise be measured directly. The lattice enthalpy is the enthalpy change involved in the formation of an ionic compound from gaseous ions (an exothermic process ), or sometimes defined as the energy to break the ...
The Haber process, [146] also called the Haber–Bosch process, is the main industrial procedure for the production of ammonia. [ 147 ] [ 148 ] It converts atmospheric nitrogen (N 2 ) to ammonia (NH 3 ) by a reaction with hydrogen (H 2 ) using finely divided iron metal as a catalyst:
The production of 90% of chemicals (by volume) is assisted by solid catalysts. [2] The chemical and energy industries rely heavily on heterogeneous catalysis. For example, the Haber–Bosch process uses metal-based catalysts in the synthesis of ammonia, an important component in fertilizer; 144 million tons of ammonia were produced in 2016. [5]
Chemisorption is a kind of adsorption which involves a chemical reaction between the surface and the adsorbate. New chemical bonds are generated at the adsorbent surface. Examples include macroscopic phenomena that can be very obvious, like corrosion [clarification needed], and subtler effects associated with heterogeneous catalysis, where the catalyst and reactants are in different pha
An illustrative example is the effect of catalysts to speed the decomposition of hydrogen peroxide into water and oxygen: . 2 H 2 O 2 → 2 H 2 O + O 2. This reaction proceeds because the reaction products are more stable than the starting compound, but this decomposition is so slow that hydrogen peroxide solutions are commercially available.
The main finding of Haber and Weiss was that hydrogen peroxide (H 2 O 2) is decomposed by a chain reaction. [2] The Haber–Weiss reaction chain proceeds by successive steps: (i) initiation, (ii) propagation and (iii) termination. The chain is initiated by the Fenton reaction: Fe 2+ + H 2 O 2 → Fe 3+ + HO – + HO • (step 1: initiation)