Search results
Results from the WOW.Com Content Network
Supercritical fluids act as a new medium for the generation of novel crystalline forms of APIs (Active Pharmaceutical Ingredients) named as pharmaceutical cocrystals. Supercritical fluid technology offers a new platform that allows a single-step generation of particles that are difficult or even impossible to obtain by traditional techniques.
Carbon dioxide pressure-temperature phase diagram This video shows the property of carbon dioxide to go into a supercritical state with increasing temperature. Supercritical carbon dioxide (s CO 2) is a fluid state of carbon dioxide where it is held at or above its critical temperature and critical pressure.
It is called supercritical fluid. The common textbook knowledge that all distinction between liquid and vapor disappears beyond the critical point has been challenged by Fisher and Widom, [8] who identified a p–T line that separates states with different asymptotic statistical properties (Fisher–Widom line).
The supercritical solvent is passed into a vessel at lower pressure than the extraction vessel. The density, and hence dissolving power, of supercritical fluids varies sharply with pressure, and hence the solubility in the lower density CO 2 is much lower, and the material precipitates for collection. It is possible to fractionate the dissolved ...
The SCWR operates at supercritical pressure. The reactor outlet coolant is supercritical water.Light water is used as a neutron moderator and coolant. Above the critical point, steam and liquid become the same density and are indistinguishable, eliminating the need for pressurizers and steam generators (), or jet/recirculation pumps, steam separators and dryers ().
Supercritical fluid chromatography (SFC) [1] is a form of normal phase chromatography that uses a supercritical fluid such as carbon dioxide as the mobile phase. [2] [3] It is used for the analysis and purification of low to moderate molecular weight, thermally labile molecules and can also be used for the separation of chiral compounds.
Efficient supercritical CO 2 power cycles requires that the compressor inlet temperature is close to, or even lower than, the critical temperature of the fluid (31 °C for pure carbon dioxide). When this target is reached, and the heat source is higher than 600–650 °C, then the sCO 2 cycle outperforms any Rankine cycle running on water ...
However, different criteria still allow to distinguish liquid-like and more gas-like states of a supercritical fluid. These criteria result in different boundaries in the pT plane. These lines emanate either from the critical point, or from the liquid–vapor boundary (boiling curve) somewhat below the critical point.