enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Transformation matrix - Wikipedia

    en.wikipedia.org/wiki/Transformation_matrix

    In linear algebra, linear transformations can be represented by matrices.If is a linear transformation mapping to and is a column vector with entries, then there exists an matrix , called the transformation matrix of , [1] such that: = Note that has rows and columns, whereas the transformation is from to .

  3. Row and column spaces - Wikipedia

    en.wikipedia.org/wiki/Row_and_column_spaces

    The column space of this matrix is the vector space spanned by the column vectors. In linear algebra, the column space (also called the range or image) of a matrix A is the span (set of all possible linear combinations) of its column vectors. The column space of a matrix is the image or range of the corresponding matrix transformation.

  4. Row and column vectors - Wikipedia

    en.wikipedia.org/wiki/Row_and_column_vectors

    In linear algebra, a column vector with ⁠ ⁠ elements is an matrix [1] consisting of a single column of ⁠ ⁠ entries, for example, = [].. Similarly, a row vector is a matrix for some ⁠ ⁠, consisting of a single row of ⁠ ⁠ entries, = […]. (Throughout this article, boldface is used for both row and column vectors.)

  5. Vectorization (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Vectorization_(mathematics)

    Multiplication of X by e i extracts the i-th column, while multiplication by B i puts it into the desired position in the final vector. Alternatively, the linear sum can be expressed using the Kronecker product : vec ⁡ ( X ) = ∑ i = 1 n e i ⊗ X e i {\displaystyle \operatorname {vec} (\mathbf {X} )=\sum _{i=1}^{n}\mathbf {e} _{i}\otimes ...

  6. Moore–Penrose inverse - Wikipedia

    en.wikipedia.org/wiki/Moore–Penrose_inverse

    In mathematics, and in particular linear algebra, the Moore–Penrose inverse ⁠ + ⁠ of a matrix ⁠ ⁠, often called the pseudoinverse, is the most widely known generalization of the inverse matrix. [1] It was independently described by E. H. Moore in 1920, [2] Arne Bjerhammar in 1951, [3] and Roger Penrose in 1955. [4]

  7. Woodbury matrix identity - Wikipedia

    en.wikipedia.org/wiki/Woodbury_matrix_identity

    A common case is finding the inverse of a low-rank update A + UCV of A (where U only has a few columns and V only a few rows), or finding an approximation of the inverse of the matrix A + B where the matrix B can be approximated by a low-rank matrix UCV, for example using the singular value decomposition.

  8. Matrix determinant lemma - Wikipedia

    en.wikipedia.org/wiki/Matrix_determinant_lemma

    Using unit vectors for u and/or v, individual columns, rows or elements [4] of A may be manipulated and a correspondingly updated determinant computed relatively cheaply in this way. When the matrix determinant lemma is used in conjunction with the Sherman–Morrison formula, both the inverse and determinant may be conveniently updated together.

  9. Jacobian matrix and determinant - Wikipedia

    en.wikipedia.org/wiki/Jacobian_matrix_and...

    In detail, if h is a displacement vector represented by a column matrix, the matrix product J(x) ⋅ h is another displacement vector, that is the best linear approximation of the change of f in a neighborhood of x, if f(x) is differentiable at x.

  1. Related searches inverse of a column vector example in excel spreadsheet with 4 rows and 12

    vector rows and columnsrow vector examples
    row and column vector formula