Search results
Results from the WOW.Com Content Network
Confocal endoscopy, or confocal laser endomicroscopy (CLE), is a modern imaging technique that allows the examination of real-time microscopic and histological features inside the body. In the word "endomicroscopy", endo- means "within" and -skopein means "to view or observe".
Colocalization is used in real-time single-molecule fluorescence microscopy to detect interactions between fluorescently labeled molecular species. In this case, one species (e.g. a DNA molecule) is typically immobilized on the imaging surface, and the other species (e.g. a DNA-binding protein) is supplied to the solution.
Endomicroscopy is a technique for obtaining histology-like images from inside the human body in real-time, [1] [2] [3] a process known as ‘optical biopsy’. [4] [5] It generally refers to fluorescence confocal microscopy, although multi-photon microscopy and optical coherence tomography have also been adapted for endoscopic use.
The bleached profile will not be a radial step function. If the bleached spot is effectively a single pixel then the bleaching as a function of position will typically be diffraction limited and determined by the optics of the confocal laser scanning microscope used. This is not a radial step function and also varies along the axis ...
Fluorescence and confocal microscopes operating principle. Confocal microscopy, most frequently confocal laser scanning microscopy (CLSM) or laser scanning confocal microscopy (LSCM), is an optical imaging technique for increasing optical resolution and contrast of a micrograph by means of using a spatial pinhole to block out-of-focus light in image formation. [1]
Fluorescence-lifetime imaging microscopy or FLIM is an imaging technique based on the differences in the exponential decay rate of the photon emission of a fluorophore from a sample. It can be used as an imaging technique in confocal microscopy , two-photon excitation microscopy , and multiphoton tomography.
[20] [21] Quantitative phase-contrast microscopy has an advantage over fluorescent and phase-contrast microscopy in that it is both non-invasive and quantitative in its nature. Due to the narrow focal depth of conventional microscopy, live-cell imaging is to a large extent currently limited to observing cells on a single plane.
Two-photon excitation microscopy of mouse intestine.Red: actin.Green: cell nuclei.Blue: mucus of goblet cells.Obtained at 780 nm using a Ti-sapphire laser.. Two-photon excitation microscopy (TPEF or 2PEF) is a fluorescence imaging technique that is particularly well-suited to image scattering living tissue of up to about one millimeter in thickness.