Search results
Results from the WOW.Com Content Network
Importance sampling is a variance reduction technique that can be used in the Monte Carlo method.The idea behind importance sampling is that certain values of the input random variables in a simulation have more impact on the parameter being estimated than others.
The sample size is an important feature of any empirical study in which the goal is to make inferences about a population from a sample. In practice, the sample size used in a study is usually determined based on the cost, time, or convenience of collecting the data, and the need for it to offer sufficient statistical power. In complex studies ...
Exponential Tilting is used in Monte Carlo Estimation for rare-event simulation, and rejection and importance sampling in particular. In mathematical finance [ 1 ] Exponential Tilting is also known as Esscher tilting (or the Esscher transform ), and often combined with indirect Edgeworth approximation and is used in such contexts as insurance ...
A variety of data re-sampling techniques are implemented in the imbalanced-learn package [1] compatible with the scikit-learn Python library. The re-sampling techniques are implemented in four different categories: undersampling the majority class, oversampling the minority class, combining over and under sampling, and ensembling sampling.
An illustration of Monte Carlo integration. In this example, the domain D is the inner circle and the domain E is the square. Because the square's area (4) can be easily calculated, the area of the circle (π*1.0 2) can be estimated by the ratio (0.8) of the points inside the circle (40) to the total number of points (50), yielding an approximation for the circle's area of 4*0.8 = 3.2 ≈ π.
The sequential importance resampling technique provides another interpretation of the filtering transitions coupling importance sampling with the bootstrap resampling step. Last, but not least, particle filters can be seen as an acceptance-rejection methodology equipped with a recycling mechanism.
Let the unknown parameter of interest be , and assume we have a statistic such that the expected value of m is μ: [] =, i.e. m is an unbiased estimator for μ. Suppose we calculate another statistic such that [] = is a known value.
The nested sampling algorithm is a computational approach to the Bayesian statistics problems of comparing models and generating samples from posterior distributions. It was developed in 2004 by physicist John Skilling.