enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Importance sampling - Wikipedia

    en.wikipedia.org/wiki/Importance_sampling

    Importance sampling is a variance reduction technique that can be used in the Monte Carlo method.The idea behind importance sampling is that certain values of the input random variables in a simulation have more impact on the parameter being estimated than others.

  3. Monte Carlo method - Wikipedia

    en.wikipedia.org/wiki/Monte_Carlo_method

    The best-known importance sampling method, the Metropolis algorithm, can be generalized, and this gives a method that allows analysis of (possibly highly nonlinear) inverse problems with complex a priori information and data with an arbitrary noise distribution.

  4. Oversampling and undersampling in data analysis - Wikipedia

    en.wikipedia.org/wiki/Oversampling_and_under...

    Within statistics, oversampling and undersampling in data analysis are techniques used to adjust the class distribution of a data set (i.e. the ratio between the different classes/categories represented). These terms are used both in statistical sampling, survey design methodology and in machine learning.

  5. Founders of statistics - Wikipedia

    en.wikipedia.org/wiki/Founders_of_statistics

    Statistics is the theory and application of mathematics to the scientific method including hypothesis generation, experimental design, sampling, data collection, data summarization, estimation, prediction and inference from those results to the population from which the experimental sample was drawn.

  6. Exponential tilting - Wikipedia

    en.wikipedia.org/wiki/Exponential_tilting

    Exponential Tilting is used in Monte Carlo Estimation for rare-event simulation, and rejection and importance sampling in particular. In mathematical finance [ 1 ] Exponential Tilting is also known as Esscher tilting (or the Esscher transform ), and often combined with indirect Edgeworth approximation and is used in such contexts as insurance ...

  7. Particle filter - Wikipedia

    en.wikipedia.org/wiki/Particle_filter

    The sequential importance resampling technique provides another interpretation of the filtering transitions coupling importance sampling with the bootstrap resampling step. Last, but not least, particle filters can be seen as an acceptance-rejection methodology equipped with a recycling mechanism.

  8. Theoretical sampling - Wikipedia

    en.wikipedia.org/wiki/Theoretical_sampling

    Grounded theory can be described as a research approach for the collection and analysis of qualitative data for the purpose of generating explanatory theory, in order to understand various social and psychological phenomena. Its focus is to develop a theory from continuous comparative analysis of data collected by theoretical sampling. [4]

  9. Blocking (statistics) - Wikipedia

    en.wikipedia.org/wiki/Blocking_(statistics)

    In the statistical theory of the design of experiments, blocking is the arranging of experimental units that are similar to one another in groups (blocks) based on one or more variables. These variables are chosen carefully to minimize the affect of their variability on the observed outcomes.