Search results
Results from the WOW.Com Content Network
Aircraft with thrust-to-weight ratio greater than 1:1 can pitch straight up and maintain airspeed until performance decreases at higher altitude. [3] A plane can take off even if the thrust is less than its weight as, unlike a rocket, the lifting force is produced by lift from the wings, not directly by thrust from the engine.
The meaning of jet engine performance has been phrased as 'the end product that a jet engine company sells' [1] and, as such, criteria include thrust and fuel consumption, life, weight, emissions, diameter and cost. Performance criteria reflect the level of technology used in the design of an engine and the technology has been advancing ...
The thrust-to-weight ratio of jet engines with similar configurations varies with scale, but is mostly a function of engine construction technology. For a given engine, the lighter the engine, the better the thrust-to-weight is, the less fuel is used to compensate for drag due to the lift needed to carry the engine weight, or to accelerate the ...
Thrust power is the speed multiplied by the drag, is obtained from the lift-to-drag ratio: =; here Wg is the weight (force in newtons, if W is the mass in kilograms); g is standard gravity (its exact value varies, but it averages 9.81 m/s 2).
Specific thrust is the thrust per unit air mass flowrate of a jet engine (e.g. turbojet, turbofan, etc.) and can be calculated by the ratio of net thrust/total intake airflow. [1] Low specific thrust engines tend to be more efficient of propellant (at subsonic speeds), but also have a lower effective exhaust velocity and lower maximum airspeed.
A Lockheed Martin F-35 Lightning II aircraft performing a vertical climb using its Pratt & Whitney F135 jet engine, which produces 43,000 lbf (190,000 N) of thrust. [1] Thrust is a reaction force described quantitatively by Newton's third law.
The engine delivers thrust in the 35,000 lbf (156 kN) class and was designed for sustained supersonic flight without afterburners, or supercruise. Delivering almost 22% more thrust with 40% fewer parts than its F100 predecessor, the F119 allows the F-22 to achieve supercruise speeds of up to Mach 1.8.
The familiar study of jet aircraft treats jet thrust with a "black box" description which only looks at what goes into the jet engine, air and fuel, and what comes out, exhaust gas and an unbalanced force. This force, called thrust, is the sum of the momentum difference between entry and exit and any unbalanced pressure force between entry and ...