Search results
Results from the WOW.Com Content Network
The least common multiple of the denominators of two fractions is the "lowest common denominator" (lcd), and can be used for adding, subtracting or comparing the fractions. The least common multiple of more than two integers a , b , c , . . . , usually denoted by lcm( a , b , c , . . .) , is defined as the smallest positive integer that is ...
The lowest common denominator of a set of fractions is the lowest number that is a multiple of all the denominators: their lowest common multiple. The product of the denominators is always a common denominator, as in: + = + =
Least common multiple, a function of two integers; Living Computer Museum; Life cycle management, management of software applications in virtual machines or in containers; Logical Computing Machine, another name for a Turing machine
This page was last edited on 26 September 2009, at 23:24 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
The lowest common divisor is a term often mistakenly used to refer to: Lowest common denominator, the lowest common multiple of the denominators of a set of fractions; Greatest common divisor, the largest positive integer that divides each of the integers
m and n are coprime (also called relatively prime) if gcd(m, n) = 1 (meaning they have no common prime factor). lcm(m, n) (least common multiple of m and n) is the product of all prime factors of m or n (with the largest multiplicity for m or n). gcd(m, n) × lcm(m, n) = m × n. Finding the prime factors is often harder than computing gcd and ...
Lowest common factor may refer to the following mathematical terms: ... also known as the greatest common factor; Least common multiple; Lowest common denominator
To begin, multiples of 462 are subtracted from 1071 until the remainder is less than 462. Two such multiples can be subtracted (q 0 = 2), leaving a remainder of 147: 1071 = 2 × 462 + 147. Then multiples of 147 are subtracted from 462 until the remainder is less than 147. Three multiples can be subtracted (q 1 = 3), leaving a remainder of 21: