Search results
Results from the WOW.Com Content Network
Non-coding DNA (ncDNA) sequences are components of an organism's DNA that do not encode protein sequences. Some non-coding DNA is transcribed into functional non-coding RNA molecules (e.g. transfer RNA, microRNA, piRNA, ribosomal RNA, and regulatory RNAs). Other functional regions of the non-coding DNA fraction include regulatory sequences that ...
Pseudogenes are nonfunctional segments of DNA that resemble functional genes.Pseudogenes can be formed from both protein-coding genes and non-coding genes. In the case of protein-coding genes, most pseudogenes arise as superfluous copies of functional genes, either directly by gene duplication or indirectly by reverse transcription of an mRNA transcript.
Junk DNA (non-functional DNA) is a DNA sequence that has no known biological function. [ 1 ] [ 2 ] Most organisms have some junk DNA in their genomes —mostly pseudogenes and fragments of transposons and viruses—but it is possible that some organisms have substantial amounts of junk DNA.
Non-functional DNA elements such as pseudogenes and repetitive DNA, both of which are types of junk DNA, can also be found in intergenic regions—although they may also be located within genes in introns. [2] It is possible that these regions contain as of yet unidentified functional elements, such as non-coding genes or regulatory sequences. [3]
Human genomes include both protein-coding DNA sequences and various types of DNA that does not encode proteins. The latter is a diverse category that includes DNA coding for non-translated RNA, such as that for ribosomal RNA, transfer RNA, ribozymes, small nuclear RNAs, and several types of regulatory RNAs.
DNA sequencing is the process of determining the nucleotide sequence of a given DNA fragment. The sequence of the DNA of a living thing encodes the necessary information for that living thing to survive and reproduce. Therefore, determining the sequence is useful in fundamental research into why and how organisms live, as well as in applied ...
A codon table can be used to translate a genetic code into a sequence of amino acids. [1] [2] The standard genetic code is traditionally represented as an RNA codon table, because when proteins are made in a cell by ribosomes, it is messenger RNA (mRNA) that directs protein synthesis. [2] [3] The mRNA sequence is determined by the sequence of ...
Genome sizes and corresponding composition of six major model organisms as pie charts. The increase in genome size correlates with the vast expansion of noncoding (i.e., intronic, intergenic, and interspersed repeat sequences) and repeat DNA (e.g., satellite, LINEs, short interspersed nuclear element (SINEs), DNA (Alu sequence), in red) sequences in more complex multicellular organisms.