enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Polignac's conjecture - Wikipedia

    en.wikipedia.org/wiki/Polignac's_conjecture

    In number theory, Polignac's conjecture was made by Alphonse de Polignac in 1849 and states: [1] For any positive even number n, there are infinitely many prime gaps of size n. In other words: There are infinitely many cases of two consecutive prime numbers with difference n. [2]

  3. Descartes' rule of signs - Wikipedia

    en.wikipedia.org/wiki/Descartes'_rule_of_signs

    Theorem — The number of strictly positive roots (counting multiplicity) of is equal to the number of sign changes in the coefficients of , minus a nonnegative even number. If b 0 > 0 {\displaystyle b_{0}>0} , then we can divide the polynomial by x b 0 {\displaystyle x^{b_{0}}} , which would not change its number of strictly positive roots.

  4. Goldbach's conjecture - Wikipedia

    en.wikipedia.org/wiki/Goldbach's_conjecture

    In 1975, Hugh Lowell Montgomery and Bob Vaughan showed that "most" even numbers are expressible as the sum of two primes. More precisely, they showed that there exist positive constants c and C such that for all sufficiently large numbers N, every even number less than N is the sum of two primes, with at most CN 1 − c exceptions.

  5. Collatz conjecture - Wikipedia

    en.wikipedia.org/wiki/Collatz_conjecture

    less than 10 4 is 6171, which has 261 steps, less than 10 5 is 77 031, which has 350 steps, less than 10 6 is 837 799, which has 524 steps, less than 10 7 is 8 400 511, which has 685 steps, less than 10 8 is 63 728 127, which has 949 steps, less than 10 9 is 670 617 279, which has 986 steps, less than 10 10 is 9 780 657 630, which has 1132 ...

  6. Divisibility rule - Wikipedia

    en.wikipedia.org/wiki/Divisibility_rule

    To test the divisibility of a number by a power of 2 or a power of 5 (2 n or 5 n, in which n is a positive integer), one only need to look at the last n digits of that number. To test divisibility by any number expressed as the product of prime factors p 1 n p 2 m p 3 q {\displaystyle p_{1}^{n}p_{2}^{m}p_{3}^{q}} , we can separately test for ...

  7. Polite number - Wikipedia

    en.wikipedia.org/wiki/Polite_number

    In number theory, a polite number is a positive integer that can be written as the sum of two or more consecutive positive integers. A positive integer which is not polite is called impolite. [1] [2] The impolite numbers are exactly the powers of two, and the polite numbers are the natural numbers that are not powers of two.

  8. Parity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Parity_(mathematics)

    Even and odd numbers have opposite parities, e.g., 22 (even number) and 13 (odd number) have opposite parities. In particular, the parity of zero is even. [2] Any two consecutive integers have opposite parity. A number (i.e., integer) expressed in the decimal numeral system is even or odd according to whether its last digit is even or odd. That ...

  9. Aliquot sequence - Wikipedia

    en.wikipedia.org/wiki/Aliquot_sequence

    The aliquot sequence starting with a positive integer k can be defined formally in terms of the sum-of-divisors function σ 1 or the aliquot sum function s in the following way: [1] = = = > = = = If the s n-1 = 0 condition is added, then the terms after 0 are all 0, and all aliquot sequences would be infinite, and we can conjecture that all aliquot sequences are convergent, the limit of these ...