Search results
Results from the WOW.Com Content Network
function Depth-Limited-Search-Backward(u, Δ, B, F) is prepend u to B if Δ = 0 then if u in F then return u (Reached the marked node, use it as a relay node) remove the head node of B return null foreach parent of u do μ ← Depth-Limited-Search-Backward(parent, Δ − 1, B, F) if μ null then return μ remove the head node of B return null
Depth-first search (DFS) is an algorithm for traversing or searching tree or graph data structures. The algorithm starts at the root node (selecting some arbitrary node as the root node in the case of a graph) and explores as far as possible along each branch before backtracking.
The function strongconnect performs a single depth-first search of the graph, finding all successors from the node v, and reporting all strongly connected components of that subgraph. When each node finishes recursing, if its lowlink is still set to its index, then it is the root node of a strongly connected component, formed by all of the ...
In computer science, the range searching problem consists of processing a set S of objects, in order to determine which objects from S intersect with a query object, called the range. For example, if S is a set of points corresponding to the coordinates of several cities, find the subset of cities within a given range of latitudes and longitudes .
In other words, the subcollection {B, D, F} is an exact cover, since every element is contained in exactly one of the sets B = {1, 4}, D = {3, 5, 6}, or F = {2, 7}.There are no more selected rows at level 3, thus the algorithm moves to the next branch at level 2…
A 1-dimensional range tree on a set of n points is a binary search tree, which can be constructed in () time. Range trees in higher dimensions are constructed recursively by constructing a balanced binary search tree on the first coordinate of the points, and then, for each vertex v in this tree, constructing a (d−1)-dimensional range tree on the points contained in the subtree of v.
The result of the series is also a function of the discrete variable, i.e. a discrete sequence. A Fourier series, by nature, has a discrete set of components with a discrete set of coefficients, also a discrete sequence. So a DFS is a representation of one sequence in terms of another sequence.
Since direct functions are dfns, APL functions defined in the traditional manner are referred to as tradfns, pronounced "trad funs". Here, dfns and tradfns are compared by consideration of the function sieve : On the left is a dfn (as defined above ); in the middle is a tradfn using control structures ; on the right is a tradfn using gotos ...