enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Point spread function - Wikipedia

    en.wikipedia.org/wiki/Point_spread_function

    By virtue of the linearity property of optical non-coherent imaging systems, i.e., . Image(Object 1 + Object 2) = Image(Object 1) + Image(Object 2). the image of an object in a microscope or telescope as a non-coherent imaging system can be computed by expressing the object-plane field as a weighted sum of 2D impulse functions, and then expressing the image plane field as a weighted sum of the ...

  3. Confocal microscopy - Wikipedia

    en.wikipedia.org/wiki/Confocal_microscopy

    Fluorescence and confocal microscopes operating principle. Confocal microscopy, most frequently confocal laser scanning microscopy (CLSM) or laser scanning confocal microscopy (LSCM), is an optical imaging technique for increasing optical resolution and contrast of a micrograph by means of using a spatial pinhole to block out-of-focus light in image formation. [1]

  4. Vertico spatially modulated illumination - Wikipedia

    en.wikipedia.org/wiki/Vertico_spatially...

    SMI + TIRF of human eye tissue affected by macular degeneration SMI microscopy is a light optical process of the so-called point spread function-engineering.These are processes which modify the point spread function (PSF) of a microscope in a suitable manner to either increase the optical resolution, to maximize the precision of distance measurements of fluorescent objects that are small ...

  5. Fluorescence microscope - Wikipedia

    en.wikipedia.org/wiki/Fluorescence_microscope

    The wave nature of light limits the size of the spot to which light can be focused due to the diffraction limit. This limitation was described in the 19th century by Ernst Abbe and "limits an optical microscope's resolution to approximately half of the wavelength of the light used." Fluorescence microscopy is central to many techniques which ...

  6. Super-resolution microscopy - Wikipedia

    en.wikipedia.org/wiki/Super-resolution_microscopy

    A single, tiny source of light can be located much better than the resolution of a microscope usually allows for: although the light will produce a blurry spot, computer algorithms can be used to accurately calculate the center of the blurry spot, taking into account the point spread function of the microscope, the noise properties of the ...

  7. Near-field scanning optical microscope - Wikipedia

    en.wikipedia.org/wiki/Near-field_scanning...

    The light source is usually a laser focused into an optical fiber through a polarizer, a beam splitter and a coupler. The polarizer and the beam splitter would serve to remove stray light from the returning reflected light. The scanning tip, depending upon the operation mode, is usually a pulled or stretched optical fiber coated with metal ...

  8. Optical resolution - Wikipedia

    en.wikipedia.org/wiki/Optical_resolution

    The ability of a lens to resolve detail is usually determined by the quality of the lens, but is ultimately limited by diffraction.Light coming from a point source in the object diffracts through the lens aperture such that it forms a diffraction pattern in the image, which has a central spot and surrounding bright rings, separated by dark nulls; this pattern is known as an Airy pattern, and ...

  9. Diffraction-limited system - Wikipedia

    en.wikipedia.org/wiki/Diffraction-limited_system

    Memorial in Jena, Germany to Ernst Karl Abbe, who approximated the diffraction limit of a microscope as = ⁡, where d is the resolvable feature size, λ is the wavelength of light, n is the index of refraction of the medium being imaged in, and θ (depicted as α in the inscription) is the half-angle subtended by the optical objective lens (representing the numerical aperture).